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ABSTRACT 
  

The Virginia Department of Transportation (VDOT) has been developing safety 
performance functions (SPFs) as a way to identify sites with a potential for safety improvement 
more effectively.  An SPF estimates the expected safety performance of a roadway as a function 
of its characteristics.  Using SPFs, VDOT can identify which roads have a significantly higher 
number of crashes than would be expected based on site conditions.  Other VDOT studies have 
developed SPFs with a microscopic perspective that separately examine individual intersections 
or discrete roadway segments.   

 
The purpose of this study was to develop an SPF-based methodology to conduct more 

intermediate-scale safety analyses.  VDOT’s Traffic Engineering Division indicated that such a 
methodology would be useful for corridor screening and planning-level applications.  The scope 
of the study was limited to the following roadway types in Virginia’s primary system: rural two-
lane, rural multilane divided, rural multilane undivided, urban two-lane, urban multilane divided, 
and urban multilane undivided.  For each type, roadway inventory data, traffic volume data, and 
crash data from 2003 through 2007 were compiled and integrated into a database.   

 
This study then took an approach that diverged from that of other SPF research to 

develop intermediate-scale SPFs.  Instead of crashes at intersections and on roadway segments 
being separated, intersection and segment crashes were combined and mapped onto the 
appropriate roadway inventory links.  In addition, site aggregation was performed to combine 
similar, adjacent roadway links into longer aggregated sites.  SPFs were then generated from 
these aggregated sites through regression analysis.  A site prioritization demonstration was then 
performed using the aggregate SPFs and aggregate sites to create lists of sites with the highest 
potential for safety improvement.  Finally, a comparison of these lists and those generated by the 
critical rate method produced quantitative evidence of the advantage of the developed SPF-based 
methodology over the traditionally used critical rate method.  Once implemented, the 
methodology developed in this study should enable VDOT to conduct corridor screening and 
planning-level analyses in a more effective and cost-efficient manner.      
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INTRODUCTION 
 

In the Commonwealth of Virginia’s Strategic Highway Safety Plan, Virginia stated its 
vision of making its surface transportation system the safest in the nation by 2025 (Surface 
Transportation Safety Executive Committee, 2006).  Achieving such an ambitious goal requires 
considerable reductions in the raw number of motor vehicle crashes, especially those that result 
in injuries or fatalities.  Reducing crashes will in turn require an effective means of identifying 
potentially problematic locations so that appropriate countermeasures can be put in place.  
Traditionally, the Virginia Department of Transportation (VDOT) has used a crash rate–based 
identification methodology for its highway safety management programs such as the Highway 
Safety Improvement Program.  Specifically, VDOT has employed the critical rate method, which 
compares the crash rate of a particular site and the crash rates of similar sites, to identify high-
crash locations.  The crash rates are adjusted for exposure, which is measured in vehicle miles 
traveled (VMT) for roadway segments and number of entering vehicles for intersections.  
Although reliance on crash rates has been a long-standing practice in Virginia, this methodology 
has inherent limitations, which have prompted the development of alternative approaches.        
  

There is an overarching problem with a crash rate–based methodology for identifying 
problematic locations.  An underlying assumption in this methodology is that there is a linear 
relationship between crash counts and traffic volume.  However, recent research has cast doubt 
on the validity of this assumption.  As Qin et al. (2005) and Hauer (1995) pointed out, the 
relationship between crash counts and traffic volume tends to be nonlinear.  Although the exact 
relationship varies depending on facility type, geographic region, and other factors, what is 
almost universally true is that the relationship is not perfectly linear.  Often, but not always, the 
relationship resembles a logarithmic curve such that the slope of the curve tends to flatten out as 
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traffic volume increases.  Given this knowledge, it is apparent that a crash rate–based 
methodology with its linear assumption has a systematic bias. 

      
Another drawback of a crash rate–based methodology relates to its instability at low 

traffic volumes.  Since crash rates normalize crash counts for exposure, small changes in crash 
counts on low-volume roads can cause dramatic fluctuations in crash rates.  A crash rate–based 
methodology can incorrectly interpret slight changes in crash count at such sites to be significant 
when they are, in actuality, random variations in crash occurrence.      

 
There is also a more general problem with a crash rate–based methodology.  Such a 

methodology is potentially ill equipped to identify locations with a high raw number of crashes 
since many sites with a large crash count do not necessarily have a high crash rate.  In this 
methodology, a site with a large number of crashes may be overlooked for potential treatments if 
it has a sufficiently high level of exposure.          

 
An emerging method that addresses many of the limitations of crash rate–based 

methodologies is the use of safety performance functions (SPFs).  An SPF predicts the safety 
performance of a road as a function of its characteristics.  As with the critical rate method, roads 
can be stratified into high-level categories (e.g., multilane divided primaries), and separate SPFs 
can be developed for each category through regression.  The general premise of many SPF-based 
methodologies is that high-crash locations may be identified by comparing the recently observed 
safety record of a particular site to the expected safety performance using an appropriate SPF.  
Use of SPFs offers the opportunity to identify locations in need of safety improvement more 
effectively than crash rate–based approaches, thereby ensuring more effective use of limited state 
funds to improve safety. 

 
This emerging trend has prompted VDOT’s Traffic Engineering Division (TED) and the 

Virginia Transportation Research Council (VTRC) to pursue a program of research to develop 
SPFs for Virginia roads.  Such studies have been conducted to develop SPFs for discrete, 
isolated roadway segments and intersections (Garber and Rivera, 2010; Garber et al., 2010).  No 
studies, however, have developed and applied an SPF-based methodology to analyze 
intermediate-length sections of Virginia’s roads.  VDOT’s TED indicated the need for a 
planning-level methodology that could identify 2- to 3-mi sections of roadway for further, 
localized analysis.  A robust methodology would support a number of VDOT’s programs, such 
as the Highway Safety Corridor Program, the Highway Safety Improvement Program, and the 
Strategically Targeted Affordable Roadway Solutions Program, and a variety of statewide and 
regional planning applications.                                                                                                                                  

 
 It is important to note how the microscopic SPFs developed in other Virginia-specific 

studies may not be well tailored to support some highway safety management programs and 
applications.  Garber et al. (2010) developed urban and rural two-lane roadway segment SPFs for 
primary and secondary roads in Virginia.  In a separate study, Garber and Rivera (2010) 
developed SPFs for rural and urban intersections with varying traffic control types (i.e., 
signalized versus unsignalized) and numbers of approach legs.  In both studies, an attempt was 
made to segregate intersection-related crashes from segment-related crashes because of the 
differing characteristics of intersection and segment crashes (Garber et al., 2010).  Therefore, the 
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SPFs developed by Garber et al. (2010) are intended strictly for discrete two-lane roadway 
segments because crash data deemed to be intersection related were not included in the 
regression analysis.  A threshold value of 0.03 mi (158.4 ft) was selected so that any crash 
occurring within a 0.03-mi radius of an intersection was deemed to be intersection related and 
thus excluded (Garber et al., 2010).  Conversely, the intersection SPFs developed by Garber and 
Rivera (2010) used crash data from within only a 0.03-mi radius of intersections.  This 
procedural assumption contributes to the microscopic, localized nature of the SPFs developed in 
both studies.   

 
It can be argued that such a modeling approach is inappropriate for corridor and 

planning-level analyses.  No single threshold value can be selected that correctly distinguishes all 
intersection-related crashes from segment-related crashes for every site.  For example, if the left-
turn bay storage on a leg of an intersection is 200 ft and a queue builds on the turn lane extending 
into a through lane, a rear-end collision between a vehicle in the queue and a vehicle traveling on 
the through lane would be incorrectly designated a segment-related crash.  Numerous other crash 
scenarios may also be incorrectly designated intersection related or segment related.  In addition, 
by partitioning the roadway system in this way, each site becomes an isolated, discrete roadway 
entity.  For roadway segments, this may cause lengths to become very short (e.g., 0.01 mi).  In 
these situations, a number of these sites would have to be grouped together in order to conduct a 
meaningful corridor analysis.  In order to characterize accurately a highway corridor, any and all 
intersections must also be modeled separately.  Thus, the sites that were disaggregated into 
roadway entities to construct segment and intersection SPFs must be aggregated back together in 
some way for corridor analysis.   

 
Given the limitations of existing SPF-based approaches in identifying corridors, there is a 

need for a planning-level SPF-based methodology for identifying high-crash locations.  Such a 
safety analysis methodology could benefit VDOT in three areas: intermediate-scale analyses 
necessary for corridor screening programs; analysis of alternatives during the project 
development process; and incorporation of safety into the planning process.       

 
 
 

PURPOSE AND SCOPE 
 

 The purpose of this study was to develop a methodology that would enable VDOT to 
conduct planning-level safety analyses to identify sections of the primary system with a higher 
than expected crash frequency.  Such a capability would support a variety of safety programs in 
Virginia and facilitate more effective investment of available highway safety funds.  Since safety 
performance modeling plays a crucial role in this safety analysis methodology, appropriate SPFs 
must be developed and calibrated to Virginia’s conditions.   
 
 The objectives of the study were as follows:  
 

• Devise a site aggregation procedure to combine the disaggregate sites into aggregate 
sites.  
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• Develop a set of SPFs for different roadway types first from the disaggregate sites 
and then from the aggregate sites.  

 
• Evaluate and compare the goodness of fit (GOF) of the SPFs developed using 

appropriate statistical measures. 
 
• Demonstrate site prioritization using the aggregate SPFs and aggregate sites, and 

compare the results relative to those of the critical crash rate–based method. 
 

The scope of the study was limited to primary roads in Virginia with no control of access.  
More precisely, the study addressed the following six roadway types in the primary system: rural 
two-lane, rural multilane divided, rural multilane undivided, urban two-lane, urban multilane 
divided, and urban multilane undivided.  Freeways were not assessed.  The primary system was 
selected for analysis since it contains a diverse set of roads and offers the opportunity to examine 
the methodology across a broad range of roadway configurations and traffic conditions.  SPFs 
were also developed for two levels of crash severity: all crashes and severe (fatal and injury) 
crashes. 
 

 
METHODS 

 
 The following tasks were undertaken to achieve the study objectives. 
 

1. Select an SPF model form. 
2. Prepare the data. 
3. Stratify the data.  
4. Aggregate the sites. 
5. Assign the data to estimation and validation data sets. 
6. Develop SPFs. 
7. Assess GOF. 
8. Demonstrate site prioritization. 
 

 
Selection of an SPF Model Form 

 
  The main purpose of this study was to produce a planning-level methodology for 
identifying high-crash roadway sections.  Since SPFs would be the basis of this methodology, the 
first task was to identify and select the most appropriate SPF model form for this purpose.  The 
literature was reviewed to identify candidate model forms that could be adapted to a macroscopic 
analysis of corridors.  In doing so, four criteria were considered in evaluating the suitability of 
the candidate models.   
 

1. Feasibility of meeting the data requirements of the candidate model.  Since an 
explicit parameter of this study was to use data commonly available in existing 
VDOT databases, this criterion was of paramount importance.   
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2. Versatility of the model form in terms of the areas of application.  Since the study had 
to address six specific roadway types and two severity levels, candidate models that 
best covered these required areas were sought.   

 
3. Quality of model fit demonstrated by each candidate SPF.   

 
4. Ease of implementation for VDOT.  Regardless of model fit, versatility, and 

feasibility of development, the SPFs generated would not be highly useful if they 
could not easily be applied by VDOT for highway safety management.  Ease of 
implementation was assessed by comparing the capabilities of analytical software 
tools available to TED to support the deployment of each candidate SPF model.  
Specifically, the feasibility of integrating the SPFs into the existing SafetyAnalyst 
tool being used by TED was assessed.                  

 
 

Preparation of Data 
 

 Prior to the development of SPFs, it was necessary to develop a database that could be 
used for model construction.  A database was assembled that contained roadway cross-section 
data, traffic volume data, and crash data for the 5-year period 2003 through 2007.  Each data 
element was originally in a separate database, so integrating the elements into one database was a 
major initial task.  The VDOT Highway and Traffic Records Information System (HTRIS) 
contains a roadway inventory database that includes cross-section data.  The VDOT Traffic 
Monitoring System (TMS) database consists of traffic volume data on each link.  The VDOT 
crash database, also maintained in HTRIS, contained the required crash data.  All three data 
sources had to be combined into an integrated database that could be used for model 
construction.   
 

This task was divided into two major stages.  First, the HTRIS roadway inventory links 
were joined to the TMS traffic links.  Second, the resulting combined roadway inventory and 
traffic dataset was joined to the crash data.  At this point, it is important to note the way 
intersection crashes were mapped to the roadway inventory system in this study.  A crash that 
occurred in an intersection was mapped to either the major road or the minor road but not to 
both.  This determination was made using the VDOT crash database.  Every crash record in the 
VDOT crash database assigns the crash to a specific route number.  If the route number belonged 
to the major road, the crash count was mapped onto the major road (and vice versa).  This 
approach was taken to avoid double counting crashes and facilitate site aggregation.  In contrast, 
the intersection models developed in microscopic SPF studies incorporated the crash data and 
traffic volume data from both the major road and the minor road.     

 
 

Stratification of Data 
 

The next task was to stratify the primary system into appropriate divisions that warranted 
their own SPF.  Since Virginia’s primary roads vary tremendously in terms of geometric and 
traffic conditions, it was essential to distinguish among different roadway types when SPFs were 
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generated.  Since the results of this study were intended to be incorporated into SafetyAnalyst, 
the roadway types used by this software were used to stratify the data.  After a review of the 
roadway types included in SafetyAnalyst, the following six categories were selected for this 
study:  

1. rural two-lane 
2. rural multilane divided (no control of access) 
3. rural multilane undivided  
4. urban two-lane 
5. urban multilane divided (no control of access) 
6. urban multilane undivided. 

 
As shown in Table 1, the database was stratified into these roadway types using three 

data fields from the roadway inventory database: functional classification, number of lanes, and 
facility type.  The functional classification field separated the rural and urban sites, as shown in 
Table 2.  The number of lanes separated the two-lane and multilane sites.  The facility type data 
field separated the divided multilane highways and the undivided highways and filtered out sites 
with full or partial control of access, as shown in Table 3.      

 
Table 1. Data Fields Used to Define Roadway Types 

SPF Category Functional Classification No. of Lanes Facility Type 
Rural two-lane 2, 3, 4, 5 or 6 2 0 
Rural multilane divided 2, 3, 4, 5 or 6 >2 1 
Rural multilane undivided 2, 3, 4, 5 or 6 >2 0 
Urban two-lane E, F, G, H, I, or J 2 0 
Urban multilane divided E, F, G, H, I, or J >2 1 
Urban multilane undivided E, F, G, H, I, or J >2 0 
SPF = safety performance function. 

 
Table 2. Codes and Descriptions for Functional Classification Data Field 

Functional 
Classification Description 

0 Unknown functional class 
1 Rural interstate 
2 Rural other principal arterial 
3 Rural minor arterial 
4 Rural major collector 
5 Rural minor collector 
6 Rural local 
A Urban interstate 
B Urban freeways and expressways; Connecting links of rural principal arterial 
C Urban freeways and expressways; Connecting links of rural minor arterial 
D Urban freeways and expressways; Other 
E Urban other principal arterials; Connecting links of other rural principal arterial 
F Urban other principal arterials; Connecting links of rural minor arterial 
G Urban other principal arterials; Other 
H Urban minor arterial 
I Urban collector 
J Urban local 
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Table 3. Codes and Descriptions of Facility Type Data Field 
Facility Type Description 
0 Two-way, non-divided 
1 Divided, no control of access 
2 Divided, partial control of access 
3 Divided, full control of access 
4 One-way, part of a one-way system 
5 Two-way, part of a one-way system 
6 One-way couplet 
7 Transition 
A One-way structure (bridge, tunnel, causeway, etc.) 
B Two-way structure (bridge, tunnel, causeway, etc.) 

 
 
Further, since geography can influence geometric and traffic conditions, geographic 

differences had to be taken into account.  A separate SPF was developed for each roadway type 
in distinct geographic regions in addition to statewide models.  Using VDOT districts was one 
means of defining distinct geographic regions.  Figure 1 illustrates these districts.  If they were 
used to subdivide the data, however, the sample sizes of specific roadway types would be 
prohibitively small in some cases.  Therefore, an alternative geographic sorting scheme was 
developed through consultation between VTRC and TED.  In this alternative, the nine VDOT 
districts were divided into three major geographical regions that were essentially based on 
aggregations of the VDOT operations regions in use at the time.  It was determined that the 
regions produced sufficiently large sample sizes while preserving some information regarding 
the distinct geographic variations found in Virginia.  This same approach toward geographic 
stratification of data was taken by Garber and Rivera (2010).  Table 4 shows how these three 
regions were defined using VDOT operations regions, districts, and maintenance jurisdictions.     

    

 
Figure 1.  VDOT Construction Districts 
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Table 4.  Composition of the Three Major Geographic Regions for Study 
SPF Regions North West Central/East 
Operations 
regions 

Northern  Northwest  Southwest  Central  Eastern 

Districts Northern Virginia Staunton  Bristol  Richmond  Hampton Roads 
      Salem      
      Lynchburg      
Additional  Fauquier Greene    Lancaster  Matthews  
maintenance  Stafford  Albemarle    Northumberland  Middlesex 
jurisdictions Rappahannock  Fluvanna    Richmond  Gloucester 
(if applicable) Culpeper  Louisa    Westmoreland    
  Madison      Essex    
  Orange      Caroline    
  Spotsylvania      King and Queen    
  King George      King William    
SPF = safety performance function. 

 
 One potential limitation of these specific geographic regions relates to what is classified 
as rural versus urban in different parts of the state.  This problem is probably most pronounced in 
the North region.  In that case, rural two-lane roads from heavily urbanized areas (such as those 
in Northern Virginia) are grouped with rural two-lane roads in rural areas (such as those in 
Madison County).  Even though the roads in both areas have rural functional classifications, 
roadside characteristics and design may be different.  The SPFs in this study were developed 
using the operational regions in place at the time of the study, but there may be bias in the rural 
SPF classifications toward identifying locations in more urbanized counties because of the way 
the counties were grouped.  Since the SPFs were developed as functions of volume, however, the 
modeling process can address this to some extent.   
 
 

Aggregation of Sites 
 

The integrated database of disaggregate sites developed in the last task was not well 
designed to meet the goal of developing planning-level SPFs directly.  This database contained a 
high proportion of short links, including numerous links only 0.01 mi long.  These extremely 
short links were often located between two nearby intersections.  Such sites would, in essence, 
reflect the crash characteristics of intersections as opposed to roadway segments.  They would 
also be likely to have tremendous variability in terms of crash occurrence because of the higher 
number of conflict points at intersections relative to roadway segments.  Even if certain short 
links did not display the crash characteristics of intersections, they would be problematic in 
another sense.  Shorter links tend to have lower exposure since exposure is a function of segment 
length and average annual daily traffic (AADT).  As Lord et al. (2004) showed, low exposure on 
heterogeneous sites is sometimes the reason excess zeros are observed in crash data.  Thus, in an 
effort to give the methodology a macroscopic perspective, improve model fit, and reduce the 
occurrence of excess zeroes, the concept of site aggregation was explored.      
  

Site aggregation, as defined in this study, is simply the combining of geographically 
adjacent links that are identical with respect to geometric and traffic characteristics.  The 
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roadway inventory currently terminates links at every intersection or whenever any of a host of 
data fields representing roadway characteristics changes.  Many of these roadway characteristics 
were relevant to SPF generation such as the number of lanes, functional classification, facility 
type, access control, and traffic volume.  Other roadway characteristics were not directly relevant 
such as whether the roadway base type was crushed gravel or crushed stone.  With site 
aggregation, only adjacent links with equivalent, relevant roadway characteristics were 
combined.  Through this process, numerous links would be aggregated upward in size, thereby 
increasing the average link length of the entire database and removing a large portion of short 
links.          
           
 Factors for terminating link aggregation had to be identified.  During the data 
stratification step, six distinct road types were identified that warranted their own SPFs.  These 
categories were defined by three attributes: rural/urban designation, number of lanes, and facility 
type.  In addition, traffic volume was an essential variable and needed to be included.  Another 
critical factor in the aggregation process was geographic proximity and continuity.  This merely 
meant that two road links had to be immediately adjacent (i.e., end mile post of the prior link 
equaled the start mile post of the following link) in order for the two links to be aggregated into 
one link.  In this way, five factors for the site aggregation process were selected:              

 
1. rural versus urban designation 
2. number of lanes 
3. facility type (divided versus undivided)  
4. traffic volume 
5. geographic proximity and continuity. 

    
After these factors were selected, two possible approaches to perform the aggregation 

process were identified.  The first approach, called Tier 1 aggregation in this study, was to 
terminate aggregation whenever there was a change in any of these factors.  For example, if the 
number of lanes on a rural divided route changed from three to four, the aggregation of links 
would terminate.  The second approach, called Tier 2 aggregation, was to terminate aggregation 
only when a change in one of these factors altered the road type classification of the link.  In this 
case, a change in the number of lanes on an urban undivided route from three to four would not 
terminate aggregation because the link would still remain classified as a rural multilane 
undivided road.  However, a change in the number of lanes from two to three would terminate 
the aggregation since the road type classification would change from urban two-lane to urban 
multilane undivided.   

 
Tier 1 and 2 aggregation also differed with respect to rural versus urban designation.  The 

rural or urban designation for each link was determined using the functional classification data 
field.  For instance, urban principal arterials, urban minor arterials, urban major collectors, urban 
minor collectors, and urban local road links were all designated urban.  Likewise, rural principal 
arterials, rural minor arterials, rural major collectors, rural minor collectors, and rural local road 
links were all designated rural.  As was the case for the number of lanes data field, Tier 1 and 2 
aggregation would use the functional classification data field differently.  In Tier 1 aggregation, 
aggregation would terminate after any change in the functional classification data field.  In Tier 2 
aggregation, a change in functional classification would terminate aggregation only if the rural 



 
 

10

versus urban designation was changed.  For example, Tier 2 aggregation would combine a rural 
principal arterial two-lane link to an adjacent rural minor arterial two-lane link and Tier 1 
aggregation would not.  As a consequence, Tier 2 aggregation was more intensive than Tier 1 
aggregation because the criteria for terminating aggregation were less restrictive.         

 
 

Assignment of Data to Estimation and Validation Datasets 
 

 Prior to the development of SPFs, the integrated database in its disaggregated and 
aggregated forms had to be separated into estimation and validation sample datasets.  SPFs 
would be generated through regression analysis of the estimation samples.  The validation 
samples would be reserved to test the predictive performance of the SPFs using multiple GOF 
measures.  Data were assigned to the estimation and validation samples by random sampling in 
SAS 9.1.3 (SAS Institute, Inc., 2006).  The sampling parameters were set so that 70% of a 
particular dataset would be assigned to form an estimation sample and the remaining 30% would 
be assigned to form a validation sample.   
 

It was important for the estimation samples and corresponding validation samples to be 
as similar as possible in terms of traffic volume, total crash count frequency, and fatal + injury 
(FI) crash count frequency.  To ensure that the validation samples were representative of the 
corresponding estimation samples with respect to these three variables, several nonparametric 
statistical tests were run in SAS to compare the distributions of the validation set and of the 
corresponding estimation set.  SAS has a built-in subprogram for nonparametric tests that 
included the following: Wilcoxon test for two-sample data; Kruskal-Wallis test; median two-
sample test; median one-way; Kolmogorov-Smirnov two-sample test; Cramér von Mises; and 
Kuiper for two-sample test  (more information on nonparametric tests is provided by Hayek et al. 
[1999]).  Whenever the two-sided p-value of a Wilcoxon, Kruskall-Wallis, median, 
Kolmogorov-Smirnov, or Kuiper test was less than 0.20, the random sampling was repeated.   

 
This approach for separating data into estimation and validation datasets was rather 

conservative compared to statistical conventions for hypothesis testing.  The null hypothesis in 
each of these nonparametric tests was that the distributions of the estimation and validation sets 
were not statistically different in terms of AADT or crash frequency.   In this situation, a type I 
error would be to judge that two datasets were statistically different when they were not.  A Type 
II error would be to judge that two datasets were not statistically different when they were.  In 
this context, the researchers were far more concerned with avoiding a Type II error than a Type I 
error.  The consequence of a Type I error was merely that the researchers repeated a random 
sampling unnecessarily.  The consequence of a type II error was that the researchers had 
incorrectly decided that the validation and estimation sets were properly assigned when they had 
not been.  This error, in turn, could reduce the accuracy of the regression analysis because of 
over-fitting models and impact the GOF analysis.  Therefore, it was more important to reduce the 
probability of committing a Type II error, known as β, than it was to reduce the probability of a 
type I error, known as α.  In order to do so, it was critical to maximize the power, (1- β), of these 
nonparametric tests.  As Hauer (1996) pointed out, “when the sample size is fixed, the price of a 
decrease in the probability of Type II error is an increase in the probability to make a Type I 
error.”  In other words, one must increase α in order to decrease β assuming a fixed sample size.  
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Hence, a relatively high value was set for α, 0.2, compared to statistical conventions in 
hypothesis testing (typically 0.05) in order to help ensure that the estimation and validation sets 
had been assigned properly.   

 
 

Development of SPFs 
 

The next step was to perform regression analyses on the estimation datasets to develop 
the SPFs.  Simple linear regression could not be used because it assumes that the dependent 
variable, crash count data in this case, follows a normal distribution.  As Hauer (1997) and others 
have explained, assuming that crash count data are normally distributed is not usually valid.  
Generalized linear modeling (GLM) is an extension of traditional linear modeling that is not 
subject to this normal distribution requirement.  GLMs can assume that the dependent variable 
follows any member of “a wider class of distributions called the exponential family of 
distributions” (Dobson and Barnett, 2008).  Since crash count data are commonly modeled using 
a negative binomial or Poisson-gamma distribution (Geedipally et al., 2009), GLMs were more 
appropriate than traditional linear models for this study.      

 
GLM, however, also requires an assumption that is questionable for this study.  GLMs 

assume that the dependent variables are independent random variables and thus uncorrelated 
(Dobson and Barnett, 2008).  Since this study compiled longitudinal data, this assumption might 
not have held true.  To be more specific, 5 years of crash and traffic data were gathered for each 
site in the database.  Using a GLM in this context would mean assuming that a particular site’s 
crash count in one year is uncorrelated to its crash count in another year.  This, of course, would 
have been a dubious assumption.  Not taking the data correlation into account could have 
rendered the entire modeling process invalid.  Fortunately, there was an alternative.  One way to 
handle longitudinal data or any repeated measures data is through generalized estimating 
equations (GEEs) (Dobson and Barnett, 2008).  GEEs are similar to GLMs except that they 
explicitly model the correlation structure of the data (Dobson and Barnett, 2008).                

 
 The SAS 9.1.3 software package was used in this study since it has the capability to 

invoke GEEs to model the data.  Specifically, the GENMOD procedure in SAS was used.  This 
program required the specification of a probability distribution for the dependent variable and a 
link function. The negative binomial distribution and a logarithmic link were assumed.  The 
program also required that the user input a model, i.e., a formula relating the response variables 
as a function of explanatory variables.  The response variable was simply the number of crashes 
per year at a site.  AADT was the only explanatory variable.  Since no regression parameters 
were to be estimated for the segment length variable, the segment length was specified as an 
offset variable in the model.  It is important to emphasize that each site had 5 years of AADT 
values and crash counts and that these values were not averaged as would be done in a cross-
sectional study.  As a consequence, this analysis was using panel data (repeated measures data).  
Incorporating all of these specifications, the model took the form of Equation 1, which is the 
SafetyAnalyst SPF model form: 

 
k = ea x AADTb x SL                    [Eq. 1] 
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where 
 

 k = number of crashes per year at a site  
a, b = regression parameters 
AADT = average annual daily traffic (veh/day) 
SL = segment length (mi). 
 
In the GENMOD procedure, SAS first constructed a GLM based on Equation 1 to obtain 

initial estimates for the regression parameters a and b and their standard errors and an estimate 
for the negative binomial dispersion parameter.  Then the procedure accounted for correlation in 
the crash data by refining the estimates for a and b through the use of a GEE.  In this way, an 
SPF was constructed for every dataset in the disaggregate database, Tier 1 aggregated database, 
and Tier 2 aggregated database.  For the disaggregate database, there were 48 SPF combinations 
based on the four factors shown in Table 5.  For the aggregate databases, there were 20 SPF 
combinations based on the factors shown in Table 6.  Note that all 24 possible aggregate SPF 
combinations were not produced because the results for Tier 1 and 2 aggregation were identical 
in some cases.  In addition, regional models were not developed using aggregated data because 
of small regional sample sizes.   In all, 68 SPFs were generated for testing.     

 
Table 5. Factors Used to Define Disaggregate Safety Performance Functions 

Region Rural/Urban Facility Type Crash Severity 
1. Statewide 1. Rural 1. Two-lane 1. Total 
2. North 2. Urban 2. Multilane divided 2. Fatal + Injury 
3. West   3. Multilane undivided   
4. East/Central       

 
Table 6.  Factors Used to Define Aggregate Safety Performance Functions 

Aggregation Level Region Rural/Urban Facility Type Crash Severity 
1. Tier 1 aggregation 1. Statewide 1. Rural 1. Two-lane 1. Total 
2. Tier 2 aggregation   2. Urban 2. Multilane divided 2. Fatal + Injury 
      3. Multilane undivided   

 
 

Assessment of Goodness of Fit 
 

 Model fit for the SPFs generated in this study was assessed with the following five GOF 
statistics: mean prediction bias (MPB) (see Equation 2); mean absolute deviation (MAD) (see 
Equation 3); mean squared prediction error (MSPE) (see Equation 4); coefficient of 
determination (R2) (see Equations 5 through 7); and the Freeman-Tukey R2 coefficient of 
determination (R2

FT) (see Equations 8 through 11).  The exact formulas used for these GOF 
statistics follow:   
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where 
 
 iY = number of crashes observed at site i 

 iŶ = number of crashes predicted for site i by SPF   
 n = sample size of dataset.    
 
 With the exception of the Freeman-Tukey R2, the statistics shown earlier are commonly 
used to study model fit.  Freeman and Tukey (1950) developed the variance stabilizing 
transformation for the Poisson distribution shown in Equation 9.  Fridstrøm et al. (1995) applied 
this transformation when developing generalized regression models for crash data from 
Denmark, Finland, Norway, and Sweden.  They used Equation 8 as a GOF measure when this 
transformation was used.  This statistic was also used by the developers of SafetyAnalyst to 
represent the GOF of their negative binomial regression models.                  
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 All five GOF statistics were first computed using each generated SPF and its 
corresponding estimation dataset.  The resulting GOF measures indicated how well each SPF fit 
the data from which it was generated.  The GOF statistics were then computed again using the 
corresponding validation dataset.  The resulting GOF measures indicated how well each SPF fit 
data not used in its development.  By comparing the GOF measures of the estimation set to those 
of the validation set, one could also determine if the model demonstrated an overfitting problem.  
If the GOF measures of the estimation set were significantly better than those of the validation 
set, the model may have been over-fit to the estimation data.           
 
 Although five GOF statistics were computed, the model fit analysis relied most heavily 
on the Freeman-Tukey R2.  The reason was that the segment-based SPFs in SafetyAnalyst served 
as a baseline for comparison when evaluating this study’s SPFs.  By combining intersection 
crashes with segment crashes, it was known a priori that the SPFs in this study would suffer in 
terms of model fit when compared to the segment-based SPFs in SafetyAnalyst.  Therefore, 
comparing the model fit of the SPFs from this study to the model fit of SafetyAnalyst’s segment-
based SPFs provided valuable insights.  For instance, this comparison was first performed using 
this study’s disaggregate SPFs.  By judging the level of deterioration in model fit of the 
disaggregate SPFs relative to SafetyAnalyst’s segment-based SPFs, one could assess how much 
combining segment and crash data worsened model fit.  In another instance, the Freeman-Tukey 
R2 values provided information regarding geographic differences.  Comparing the model fit of 
SafetyAnalyst’s segment-based SPFs to this study’s regional disaggregate SPFs would help 
gauge if geographic distinctions were significant and to what extent.  Further, this Freeman-
Tukey R2 statistic was also useful in assessing the model fit of the aggregate SPFs.  The 
Freeman-Tukey R2 statistic provided a standard metric to compare this study’s aggregate SPFs 
and disaggregate SPFs and SafetyAnalyst’s segment-based SPFs.               
 
 

Demonstration of Site Prioritization 
 

 The next step was to demonstrate how the aggregate SPFs developed in this study could 
be applied to identify roadway sections on the primary system with potential safety problems.  
To do so, a network screening procedure had to be formulated that was based on safety 
performance modeling as opposed to crash rates.  SafetyAnalyst already had such a methodology 
in its network screening module for roadway segments: the sliding window approach.   
 
 In the SafetyAnalyst sliding window approach, a window with a user-specified length 
would move incrementally along contiguous roadway segments such that the current window 
location would overlap the previous one (Federal Highway Administration [FHWA], 2006).  The 
roadway segments contained in the window would be grouped as a single site so long as they 
were contiguous and homogenous (e.g., equal AADTs).  If the combined length of contiguous, 
homogenous segments was less than the user-specified length of the window at a particular 
location, the window would become as long as possible without violating these two constraints 
(FHWA, 2006).   

 
At each window location, a site’s potential for safety improvement (PSI) would be 

computed (FHWA, 2006).  The PSI could be measured as either the expected accident frequency 
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or the excess accident frequency: “the expected accident frequency that is in excess of what is 
considered normal for that type of site” (FHWA, 2006).  Both frequencies would be calculated 
using the empirical Bayes (EB) method.   Once the window traversed the entire roadway system, 
a site list would be generated by ranking the sites from the highest PSI to the lowest.   
 
 Using the SafetyAnalyst software would have been an ideal way to apply the SPFs 
developed in this study to perform site prioritization.  However, doing so would have required 
extensive data preparation and formatting to make all Virginia primary system data compatible 
with SafetyAnalyst.  Time constraints made this option impossible.  Therefore, the site 
prioritization demonstration was performed outside the SafetyAnalyst software.   

 
This study could not replicate the sliding window approach exactly because significant 

programming would have been required to mimic SafetyAnalyst’s moving window technique.  
Nonetheless, this study sought to follow the technique closely using MS Excel.  First, Tier 1 
aggregated site data were used to simulate the moving window.  Site aggregation had an effect 
similar to the moving window because both combined similar, contiguous roadway links.  In 
contrast to the moving window technique, site aggregation had neither a maximum user-
specified length nor the same overlapping effect as the moving window technique.   
   

At the outset of prioritization, crash data from the aggregated sites and uncalibrated 
aggregate SPFs for each model were available.  The next step was to calibrate the aggregate 
SPFs using the observed crash data.  To do so, five calibration factors had to be computed for 
every roadway category’s SPF (i.e., one calibration factor for every year).   A yearly calibration 
factor was computed for each roadway category by dividing the number of crashes observed in a 
given year for that entire category by of the number of crashes predicted by the appropriate 
uncalibrated SPF.  These yearly calibration factors were then applied to each uncalibrated SPF to 
produce yearly calibrated SPFs.  Equation 12 shows the form of these yearly calibrated SPFs.   

 
Afterward, yearly correction factors were calculated for each site by dividing the number 

of crashes predicted by the yearly calibrated SPF in a particular year by the number of crashes 
predicted by the yearly calibrated SPF for the base year of 2003 (see Equation 13).  The EB 
weight was then calculated for each site using Equation 14.  Then, the EB-adjusted number of 
expected crashes for 2003 was computed for each site using Equation 15.  The yearly correction 
factor for the last year, 2007, was then applied to obtain the EB-adjusted expected number of 
crashes for 2007 (see Equation 16).  The excess crash frequency for each site was then calculated 
using Equation 17.  These values represented the PSI for each site for total crashes.                                
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 )()()( TOTYTOTYTOTY kXExcess −=                            [Eq. 17] 
 
where 
 
 cyTOT  = calibration factor for total crashes for year y     

CyTOT = yearly correction factor  
kyTOT = expected number of crashes at a site during year y (from adjusted SPF) 
k1TOT = expected number of crashes at a site during year 1 (from adjusted SPF) 
KyTOT = observed number of crashes at a site during year y 
a, b = regression parameters 
AADT = average annual daily traffic (vehicles per day) 
SL = segment length (mi) 
wTOT = EB weight 

 Xy = EB-adjusted number estimated number of crashes for year y 
X1(TOT) = EB-adjusted number estimated number of crashes for year 1. 

 
Had the SafetyAnalyst approach been followed, the next step would have been to divide 

the excess crash frequency of each site by the length of its respective sliding window to express 
the excess frequency on a per mile basis (FHWA, 2006).  However, for the purposes of this 
study, it was uncertain whether this normalization step was appropriate.  With the normalization, 
PSI would be presented on a per mile basis.  Without the normalization, PSI would be presented 
on a per site basis.  Instead of assuming which form would be more meaningful, both options 
were explored.  First, site lists were created so that each list comprised 5% of the centerline 
mileage of each roadway category and contained sites with the highest PSI per site.  Similarly, 
site lists were created containing sites with the highest PSI per mile.  Thus, the result was two 
alternative prioritized site lists for each roadway category.  The alternative site lists were then 
analyzed to identify similarities and differences.      
  

The last major task in this study was to compare these SPF-based site prioritization 
methods with the critical rate method currently used by VDOT.  For this objective, the critical 
rate method was applied to the Tier 1 aggregated database of the primary system.  The critical 
rate was computed for each site in each roadway category using Equation 18.  The actual crash 
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rate was then calculated for each site.  Tier 1 aggregated sites were then ranked by the ratio of 
the actual crash rate to critical rate.  Lists were then generated with the top 5% of these sites for 
each roadway type.  These crash rate-derived site lists were compared to the normalized and non-
normalized SPF-derived site lists.  The comparison was performed by calculating the total PSI 
for each top 5% list along with the overall average PSI per site in each list.   

 

           
TB

AVRTF
TB

AVRCR ++=
5.0                           [Eq. 18] 

 
where 
 
 CR = critical crash rate, per 100 million VMT 

AVR = average crash rate in each district for each facility type per 100 million VMT 
 TB = traffic base at site, per 100 million VMT 
 TF = test factor (1.96 assumed for a 95% confidence level). 
  

The purpose of this was to compare differences between the site lists generated from 
SPF-based prioritization methods and the critical rate method.  More specifically, this 
comparison was intended to show which method more effectively identified sites with a high 
PSI.         
 
 

RESULTS AND DISCUSSION 
 

SPF Model Form 
 

 A literature review was conducted to identify candidate SPF models that could be 
adopted for intermediate-length analysis of roadway sections.  Literature on estimating the safety 
performance of transportation facilities dates back more than two decades and covers a range of 
facility types.  In one of the earliest examples, Hauer et al. (1988) investigated the safety 
performance of signalized intersections.  Additional research on estimating the safety 
performance of intersections was conducted by Kulmala (1995) and Poch and Mannering (1996).  
Although numerous sources of research regarding the estimation of safety performance were 
found, most of the literature was not directly relevant to the scope and context of this study.  For 
the purposes of this study, three major sources of SPF research were found to be especially 
useful.  In contrast to many other sources, these three studies provided a wealth of information 
regarding the safety performance modeling of roadway segments and represented some of the 
most recent research in this area.  Moreover, each source had implementation software.  This 
factor was an extremely important consideration for this study because the results of this research 
need to be implemented by TED.  The SPFs in each of these three sources were examined 
carefully to assess their suitability for this study.  

 
FHWA sponsored two of the three studies.  One developed the software suite known as 

the Interactive Highway Safety Design Model (IHSDM), and the other created the software 
package known as SafetyAnalyst.  Neither software is solely designed to model safety 



 
 

18

performance, but both have a component in their software suite with that capability.  The third 
study is a joint study between the Transportation Research Board and the American Association 
of State and Highway Transportation Officials (AASHTO) to compose the Highway Safety 
Manual (HSM) (AASHTO, 2010).  Like the IHSDM and SafetyAnalyst, the HSM provides a 
means of estimating the expected safety performance of road segments.   The IHSDM is the 
designated software for the implementation of the HSM.  

 
It is important to note that at the very beginning of this study, TED expressed a strong 

preference for receiving SPF research that was compatible with SafetyAnalyst since TED plans 
to use this program heavily in the future.  As a consequence, the outcome of any subsequent 
comparative analyses of these SPF sources was largely predetermined.  Nonetheless, the three 
sources were compared to learn about the different SPF modeling approaches.   

 
The IHSDM, SafetyAnalyst, and the HSM each developed a set of road segment SPFs 

and formulated a methodology to adapt their SPFs for use by other agencies.  The methodologies 
have differing areas of application, regression models, calibration requirements, and model fit.  
The regression models assumed by each differ mainly in terms of variables selected for inclusion 
into their general model form.  The calibration requirements for adapting each source’s SPFs 
also vary in terms of data intensity and complexity.  

 
 
IHSDM SPFs 

 
The IHSDM was developed to support detailed analyses of specific design alternatives.  

As a result, it assumes that detailed data on a roadway is available and the models are very data 
intensive.  In the initial release of the IHSDM, SPFs were developed only for rural two-lane 
highways (Turner-Fairbank Highway Research Center, 2008).  Its SPF model is shown in 
Equation 19, and the meaning of each variable is given in Table 7 (Harwood et al., 2000).  If 
baseline conditions are assumed for all variables other than exposure, Equation 19 reduces to a 
baseline SPF model, i.e., Equation 20.  Accident modification factors (AMFs) can then be 
applied to the baseline SPF model for certain roadway features that reflect local conditions 
(Harwood et al., 2000).  At a minimum, the IHSDM calibration procedure requires reliable 
traffic volume and crash record data.  Although it is not necessary, the calibration procedure can 
be improved if roadway width, shoulder width, vertical curvature, horizontal curvature, and 
access point data are available.  When the calibration factors and AMFs are included in the 
baseline model, the resulting SPF model is Equation 21.   

 
The model fit of the IHSDM SPF is summarized in Table 8 (Harwood et al., 2000), and 

Equation 22 illustrates how the GOF statistic RLR
2 is computed.  The IHSDM SPF was data 

intensive and required many elements that are not commonly available in VDOT databases.  The 
data requirements of this model, coupled with the fact that models exist only for rural two-lane 
highways, made it difficult to adopt the IHSDM model form for this study. 
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Table 7.  Definition of Variables in the IHSDM Safety Performance Function Model 
Nbr Predicted number of total accidents per year on a particular roadway segment 
EXPO Exposure in million VMT per year = (ADT)(365)(L)(10-6) 
ADT Average daily traffic volume (veh/day) on roadway segment 
L Length of roadway segment (mi) 
STATE Location of roadway segment (0 in Minnesota, 1 in Washington) 
 LW Lane width (ft); average lane width if the two directions of travel differ 
 SW Shoulder width (ft); average shoulder width if the two directions of travel differ 

 RHR Roadside hazard rating; this measure takes integer values from 1 to 7 and represents 
the average level of hazard in the roadside environment along the roadway segment 

 DD Driveway density (driveways per mile) on the roadway segment 

 Whi Weight factor for the ith horizontal curve in the roadway segment; the proportion of the 
total roadway segment length represented by the portion of the ith horizontal curve that 
lies within the segment. (The weights, WHi, must sum to 1.0.) 

DEGi Degree of curvature for the ith horizontal curve in the roadway segment (degrees per 
100 ft) 

WVj Weight factor for the jth crest vertical curve in the roadway segment; the proportion of 
the total roadway segment length represented by the portion of the jth crest vertical 
curve that lies within the segment.  (The weights, WVj, must sum to 1.0.) 

Vj Crest vertical curve grade rate for the jth crest vertical curve within the roadway 
segment in percent change in grade per 31 m (100 ft) = |gj2-gj1|/lj 

gjl'gj2  Roadway grades at the beginning and end of the jth vertical curve (%) 

lj Length of the jth vertical curve (in hundreds of feet) 
WGk Weight factor for the kth straight grade segment; the proportion of the total roadway 

segment length represented by the portion of the kth straight grade segment that lies 
within the segment.  (The weights, WGk, must sum to 1.0.) 

 GRk Absolute value of grade for the kth straight grade on the segment (%) 
IHSDM = Interactive Highway Safety Design Model. 
Source: Harwood, D.W., Council, F.M., Hauer, E., Hughes, W.E., and Vogt, A. Prediction of the Expected 
Safety Performance of Rural Two-Lane Highways.  FHWA-RD-99-207.  Federal Highway Administration, 
Washington, DC, 2000.  
 
 

Table 8.  Model Fit of the IHSDM Two-Lane Road Segment Safety Performance Function 
Goodness of Fit 

R2 RLR
2 

0.6547 0.8291 

IHSDM = Interactive Highway Safety Design Model. 
Source:  Harwood, D.W., Council, F.M., Hauer, E., Hughes, W.E., and Vogt, A. Prediction of the 
Expected Safety Performance of Rural Two-Lane Highways.  FHWA-RD-99-207.  Federal Highway 
Administration, Washington, DC, 2000. 

 
 

       
Nbr = (ADT) (L) (365) (10-6) exp(-0.4865)                          [Eq. 20]  

Nbr = EXPO × 
exp(0.6409 + 0.1388STATE - 0.0846LW - 0.0591SW+0.0668RHR+0.0084DD) × 
(∑WHi exp(0.0450DEGi)) ( ∑WVj exp (0.4652 Vj))(∑WGk exp(0.1048GRk))       [Eq. 19]
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Nrs =  Nbr × Cr (AMF1r .AMF2r ...AMFnr)                          [Eq. 21] 
 
RLR

2 = 1 – k/kmax                                                                          [Eq. 22]  
  

where 
 

Nrs = predicted number of total accidents per year on a segment after calibration for the 
state and adjustment for local conditions  
Nbr = predicted number of total accidents per year on a particular roadway segment 
assuming base conditions 
ADT = average daily traffic (veh/day) 
L = segment length (mi) 
Cr = calibration factor developed for use by a particular highway agency 
AMF1r, …AMFnr = accident modification factors for various roadway features 
k = overdispersion parameter of a regression model 
kmax = overdispersion parameter in a model with no covariates. 

 
 Subsequent expansions to the IHSDM have added models that cover rural multilane, 
urban arterial, and suburban arterial roads.  Those models are identical with those adopted by the 
HSM (AASHTO, 2010), which are discussed later. 
  
SafetyAnalyst SPFs 
 

In contrast to the IHSDM, SafetyAnalyst was developed to support a broader analysis of 
safety across an agency’s roadway network.  It is intended to identify sites with promise for 
crash reductions through engineering interventions and for prioritization of sites.  As a result, 
SafetyAnalyst developed SPF models that are applicable to a wide range of roadway types.  
Table 9 summarizes all possible road segment types for which models were developed.  Equation 
23 shows the SPF model form selected for use by SafetyAnalyst (FHWA, 2006).  Table 10 
shows Freeman-Tukey R2 values for the SafetyAnalyst SPF models relevant to this study 
alongside the specific models adopted by SafetyAnalyst for use in the software (FHWA, 2006).  
Table 10 also shows that model fits are generally better for rural segments than for urban 
segments. 
 

Table 9.  Roadway Types Covered by SafetyAnalyst’s Safety Performance Functions 
Rural Urban 

Two-lane Two-lane arterial 
Multilane undivided Multilane undivided arterial 
Multilane divided Multilane divided arterial 
Freeway with 4 lanes One-way arterial 
Freeways with 6 or more lanes Freeways with 4 lanes 
Freeways within interchange area with 4 lanes Freeways with 6 lanes 

Freeways with 8 or more lanes Freeways within interchange area with more 
than 6 lanes Freeways within interchanges with 4 lanes 
 Freeways within interchanges with 6 lanes 
 Freeways within interchange with 8 or more lanes 
Source:  Federal Highway Administration.  SafetyAnalyst User’s Manual.  Turner-Fairbank Highway 
Research Center, McLean, VA, 2006. 
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κ = eα × ADTβ1 × SL                  [Eq. 23] 
 
where 
 
 ADT = average daily traffic (veh/day)  

SL= segment length (mi) 
α = intercept 
β1 = coefficient of ADT.  
 

Table 10. Freeman-Tukey Values for SafetyAnalyst’s Segment-Based Safety Performance Functions 
Site Description State Crash Severity Safety Performance Function RFT

2 
Total κ = e-3.63 × AADT0.53 × SL 0.725Rural two-lane Ohio 
FI κ = e-4.86 × AADT0.53 × SL 0.599
Total κ = e-3.17 × AADT0.49 × SL 0.465Rural multilane undivided arterials North Carolina
FI κ = e-4.20 × AADT0.50 × SL 0.459
Total κ = e-5.05 × AADT0.66 × SL 0.498Rural multilane divided arterials Minnesota 
FI κ = e-7.46 × AADT0.72 × SL 0.372
Total κ = e-7.16 × AADT0.84 × SL 0.136Urban two-lane Ohio 
FI κ = e-8.84 × AADT0.89× SL 0.140
Total κ = e-10.24 × AADT1.29 × SL 0.235Urban multilane undivided arterials Washington 
FI κ = e-12.07 × AADT1.39 × SL 0.258
Total κ = e-11.85 × AADT1.34 × SL 0.014Urban multilane divided arterials Ohio 
FI κ = e-14.87 × AADT1.52 × SL 0.022

FI = Fatal + Injury. 
Source:  Federal Highway Administration.  SafetyAnalyst User’s Manual. Turner-Fairbank Highway Research 
Center, McLean, VA, 2006. 
 

The SafetyAnalyst SPFs have several distinct advantages.  Distinct models do exist in 
SafetyAnalyst for every roadway type to be modeled in this study.  The SPF model form is also 
simple and can be used with easily obtainable data elements.  The disadvantage of the 
SafetyAnalyst SPFs is that they do not include many roadway attributes that could play a strong 
role in safety.  For example, no consideration of roadway geometry, cross section, or speed is 
included. 
 
HSM SPFs 
 
 The HSM (AASHTO, 2010) developed SPFs for the following roadway types: non-
limited access urban and suburban arterial highways, rural two-lane highways, and nonlimited-
access rural multilane highways (Lord et al., 2008).  The SPFs for urban and suburban arterial 
multi-vehicle and single-vehicle crashes are given in Equations 24 and 25 (Harwood et al., 
2007).  Assuming baseline conditions, Equations 24 and 25 become Equation 26.  For rural two-
lane highways, the HSM uses the IHSDM’s SPF model.  Assuming baseline conditions and no 
covariates, the HSM’s SPF models for rural multilane highways also take the form of Equation 
26 (Lord et al., 2008).  If covariates are included in the rural multilane SPFs, lane width, 
shoulder width, intersection density, and horizontal curve density are added to the regression 
model as independent variables and coefficients are estimated for each.  With respect to the 
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calibration of the model, a general procedure has not yet been published.  When including the 
AMFs and calibration factor, the HSM SPF model takes the form of Equation 27.              
 

Nbrmv = exp (a + b lnADT + lnL + c SW + d OSP)                          [Eq. 24] 
 

Nbrsv = exp (a + b lnADT + lnL + c SW + d OSP + e RHR)             [Eq. 25] 
 
Nbase = exp (a + b lnADT + ln L)                [Eq. 26] 
 
N = Nbase × C (AMF1AMF2...AMFn)                [Eq. 27] 
 

where 
 
  Nbrmv = predicted number of multi-vehicle accidents per year for a segment 

 Nbrsv = predicted number of single-vehicle accidents per year for a segment 
 Nbase = predicted number of vehicle accidents per year assuming base conditions 
 N = predicted number of vehicle accidents per year with calibration and AMFs 
 ADT = average daily traffic volume (veh/day) for roadway segment 
 L = length of roadway segment (mi) 
 SW = shoulder width (ft) 
 OSP = availability of on-street parking (dummy variable) 
 RHR = Roadside Hazard Rating (scale of 1 to 7) 
 a,…,d = regression coefficients determined by model fitting 
 C = calibration factor. 
 
The HSM models offer an intermediate alternative to the IHSDM and SafetyAnalyst.  

Data requirements are more intensive than in SafetyAnalyst, and individual models are not 
available for all roadway types of interest in this study.  The models do incorporate consideration 
of certain roadway characteristics that could impact safety that are not included in SafetyAnalyst. 

 
Assessment of Models 
 

After evaluation of the IHSDM, SafetyAnalyst, and the HSM candidate SPF models 
based on the four criteria described earlier, the SPF model form from SafetyAnalyst was deemed 
most appropriate for this study.  With regard to the first criterion, the feasibility of meeting data 
requirements, this candidate was clearly superior.  Alternative model forms were far more data 
intensive since they required data on a number of roadway characteristics, which often were not 
in existing VDOT databases.   

 
As for the second criterion of versatility, SafetyAnalyst again performed better than the 

alternatives.  SafetyAnalyst had applied the same SPF model form successfully to all the 
roadway types and severity levels required for this study.  Further, the SafetyAnalyst model form 
was not restricted to particular functional classifications as were the urban and suburban arterial 
models.  Its applications extended to collectors and local roads as well as arterials.  
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With regard to the third criterion, the evaluation results were far less definitive.  Multiple 
factors complicated the comparative analysis of model fit.  The difficulty in evaluating 
candidates in terms of model fit was due, in part, to differences in how roadway types were 
defined.  In many cases, one-to-one comparisons of model fit could not be made among the 
various candidates.  Even when they could be made, there was another difficulty.  Different 
sources of SPFs used different metrics to assess model fit.  For example, SafetyAnalyst relied on 
the Freeman-Tukey R2 measure whereas other models may have used the Pearson correlation 
coefficient (Pearson R2), MSPE, or other metrics.  Therefore, no SPF source was judged superior 
with respect to this criterion because of the lack of consistent comparative data.   
 
 The evaluation results based on the fourth criterion, ease of implementation, were more 
clear and decisive.  Once again, the SafetyAnalyst SPF model form proved to be superior.  The 
deployment potential for alternative models seemed quite limited compared to that of 
SafetyAnalyst.  SafetyAnalyst software was capable of applying its SPF model form to analyze 
all six roadway types addressed in this study as well as a host of others.  Selecting the 
SafetyAnalyst model form for this study could, therefore, simplify the integration of the study’s 
results with those of future studies for other roadway types in Virginia (e.g., expressways).  
Although SPF coefficients could be changed in the SafetyAnalyst software, the underlying 
model form cannot currently be altered.  This made it impossible to apply model forms that 
differed from the default SafetyAnalyst model form in the software. 
 
 Overall, SafetyAnalyst’s regression model proved most suitable to this study based on 
this multifaceted evaluation.  Not only did it require the least amount of input data, it also 
demonstrated high versatility and ease of implementation while producing an acceptable model 
fit.  For these reasons, the SafetyAnalyst model form was selected, and all SPFs developed in 
this study take the form of the regression models in SafetyAnalyst as expressed in Equation 23.     

 
 

Data Preparation 
 

There were two stages to the data preparation step.  First, the HTRIS roadway inventory 
had to be linked to the TMS AADT data.  Second, the resulting HTRIS-TMS database had to be 
linked with the VDOT crash data.   

 
Linking of HTRIS Roadway Inventory to TMS AADT Data 
 
 The first stage of this integration process presented multiple challenges.  First, some links 
did not have any corresponding AADT information.  Since AADT was a critical variable for the 
model, links without AADT information were deleted.  Fortunately, this problem affected only 
about 2.3% of the primary road links in the roadway inventory database.  There was also another 
variation of this problem.  In some cases, AADT data on a link existed in some years but not in 
others.  For example, AADT data may have existed for 2003, 2004, and 2007 but not for 2005 
and 2006.  This problem affected 2.7% of the roadway inventory links.  Each instance of this 
problem was treated differently.  If traffic volume data were missing from either 2003 or 2007, 
the corresponding HTRIS link was deleted.  If 1 or 2 years of traffic data were missing from 
2004, 2005, or 2006, AADT values were linearly interpolated for the missing values using the 
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existing three or four AADT values.  This occurrence was rare.  If more than 2 years of traffic 
data were missing, the corresponding HTRIS link was deleted.   
 
  Yet another problem was encountered when combining the HTRIS and TMS data.  In the 
case of some HTRIS links, there were drastic fluctuations in the corresponding TMS traffic 
volume data at some time during the 5-year period under consideration.  To be more specific, 
any change of 50% in AADT or more from one year to the next was deemed a drastic 
fluctuation.  Such large changes raised suspicions regarding the accuracy of the traffic volume 
data.  As a consequence, these particular roadway segments were analyzed to determine the 
cause of the fluctuations.  A minority of these cases was found to be related to construction 
activity in which land development in the vicinity of the roadway explained the fluctuations.  
Since the remaining portion had inexplicable, large changes in traffic volume, they were deleted.  
After these and other minor issues were addressed, a database had been produced that joined the 
TMS traffic links to the HTRIS roadway inventory links.                  
  
Linking Resulting HTRIS-TMS Database with VDOT Crash Data 
 

The second stage in the construction of an integrated database was to join the VDOT 
crash data to the combined HTRIS-TMS database.  The integrated database needed to derive two 
bits of information from the crash database: the annual crash counts for each HTRIS link, and the 
annual FI crash counts for each HTRIS link.  This process presented its own set of problems.  
One problem was that a small portion of the crash data was invalid or unreliable.  The other 
problem was that crash data were missing for some parts of the primary system.   
  

Invalid or unreliable crash data were identified by comparing data fields common to the 
crash database and the HTRIS database and checking for inconsistencies.  Slightly more than 1% 
of the crash records over the 5-year period had an inconsistency with the HTRIS database in one 
or more data fields.  The most common form of inconsistency was in the facility type data field.  
For example, a crash record might have indicated that the crash occurred on a divided roadway 
segment and the HTRIS database indicated the segment was undivided or vice versa.  In 
instances of this nature, the crash data from these flawed crash records were not included in the 
final integrated database.               

 
The crash database was also tested for completeness.  It was during this data quality test 

that a second problem was discovered with the crash database.  When crash data were queried by 
one particular field, i.e., government level of control, a section of the primary system was found 
to be missing virtually all crash data.  This portion of the primary system was known as urban 
extensions–primary routes.  These roads are technically within the limits of municipalities; 
however, their maintenance is provided by VDOT through mutual agreements (VDOT, 2007).  
Since they are in the jurisdiction of municipalities, no location data were associated with any 
crash reports for these areas.  Urban extensions comprise approximately 1,000 mi of the roughly 
8,000 centerline miles of primary system and more than 6,000 of its roughly 30,000 HTRIS 
links.  Although removing this section of the primary system from the study significantly 
reduced the sample size of data available for SPF generation, there was no recourse since crashes 
could not be located.  All other deletions described earlier, cumulatively, had removed an 
additional 1,700 HTRIS links, meaning that the resulting database contained 22,217 HTRIS 
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links.  At this point, an integrated database had been produced for the primary system with all 
geometric, traffic volume, and crash data necessary to generate SPFs.   

 
 

Stratification of Data 
 

 As described earlier, the Virginia primary system was stratified by roadway type and 
geographic region.  Before geographical divisions were considered, the entire statewide database 
was stratified by roadway type.  Table 11 summarizes the resulting sample sizes of roadway 
inventory, traffic volume, and crash data for each of the six major roadway types examined in 
this study.  Geographic divisions were then imposed to create the three major geographic regions 
defined earlier: North, West, and East/Central.  Tables 12, 13, and 14 show the resulting sample 
sizes of roadway inventory, traffic volume, and crash data for those three geographic regions.      
    

Table 11.  Data Sample Sizes by Roadway Type in Entire State 
 
 
 
 

Region 

 
 
 

Rural/ 
Urban 

 
 
 
 

Class 

 
 

No. of 
Centerline 

Miles 

No. of 
HTRIS 

Roadway 
Inventory 

Links 

 
No. of 
TMS 

AADT 
Links 

 
 

No. of 
Crashes 

2003-2007 

No. of 
Fatal + 
Injury 

Crashes 
2003-2007 

Two-lane 4579.48 11587 1611 39302 16249 
Multilane divided 1311.58 3932 643 25292 10353 

Rural  

Multilane undivided 256.01 1039 239 4176 1687 
Two-lane 261.66 1572 215 8005 3051 
Multilane divided 398.02 3186 432 54015 18745 

Urban 

Multilane undivided 105.51 901 146 12039 4614 

State 

Total 6912.26 22217 3286 142829 54699 
HTRIS = Highway Traffic Records Information System; TMS = Traffic Monitoring System; AADT = annual 
average daily traffic. 
 
 

Table 12.  Data Sample Sizes by Roadway Type for North Region 

Region 

 
Rural/ 
Urban Class 

No. of 
Centerline 

Miles 

No. of 
HTRIS 

Roadway 
Inventory 

Links 

No. of 
TMS 

AADT 
Links 

No. of 
Crashes 

2003-2007 

No. of Fatal + 
Injury 

Crashes 
 2003-2007 

Two-lane 399.24 1019 141 6729 2457 
Multilane divided 166.02 475 76 5273 1840 

Rural  

Multilane undivided 7.49 28 7 236 83 
Two-lane 53.64 323 42 2418 840 
Multilane divided 142.5 1310 141 24821 8824 

Urban 

Multilane undivided 45.33 425 47 7838 3072 

North 

Total 814.22 3580 454 47315 17116 
HTRIS = Highway Traffic Records Information System; TMS = Traffic Monitoring System; AADT = annual 
average daily traffic. 
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Table 13.  Data Sample Sizes by Roadway Type for West Region 
 
 
 
 

Region 

 
 
 

Rural/ 
Urban 

 
 
 
 

Class 

 
 

No. of 
Centerline 

Miles 

No. of 
HTRIS 

Roadway 
Inventory 

Links 

 
No. of 
TMS 

AADT 
Links 

 
 

No. of 
Crashes 

2003-2007 

 
No. of Fatal + 

Injury 
Crashes 

2003-2007 
Two-lane 2996.46 7458 1023 24385 10254 
Multilane divided 677.25 2150 330 12563 5335 

Rural  

Multilane undivided 131.52 550 135 2064 833 
Two-lane 86.01 507 91 2173 884 
Multilane divided 99.54 699 129 7950 2699 

Urban 

Multilane undivided 25.59 199 45 1379 470 

West 

Total 4016.37 11563 1753 50514 20475 
HTRIS = Highway Traffic Records Information System; TMS = Traffic Monitoring System; AADT = annual 
average daily traffic. 
 

Table 14. Data Sample Sizes by Roadway Type for East/Central Region 
 
 
 
 

Region 

 
 
 

Rural/ 
Urban 

 
 
 
 

Class 

 
 

No. of 
Centerline 

Miles 

No. of  
HTRIS 

Roadway 
Inventory 

Links 

 
No. of 
TMS 

AADT 
Links 

 
 

No. of 
Crashes 

2003-2007 

 
No. of Fatal + 

Injury 
Crashes 

2003-2007 
Two-lane 1183.78 3110 447 8188 3538 
Multilane divided 468.31 1307 237 7456 3178 

Rural  

Multilane undivided 117 461 97 1876 771 
Two-lane 122.01 742 82 3414 1327 
Multilane divided 155.98 1177 162 21244 7222 

Urban 

Multilane undivided 34.59 277 54 2822 1072 

East/ 
Central 

Total 2081.67 7074 1079 45000 17108 
HTRIS = Highway Traffic Records Information System; TMS = Traffic Monitoring System; AADT = annual 
average daily traffic. 
 
 A notable finding of site stratification was that the roadway types in certain geographic 
regions had extremely limited sample sizes.  The most extreme example was the rural multilane 
undivided roadway type in the North region.  With only 28 total sites covering 7.49 mi of 
roadway, the sample size of data for this category was extremely small.  This finding was 
important because of its implications with regard to SPF model construction.  Such a small 
sample size of data would make the regression analysis unstable and cast doubt on the validity of 
any SPF model produced from that regional data.        

 
 

Site Aggregation 
 

 Before examining the results of site aggregation, it is important to note that site 
aggregation was performed only on a statewide basis.  Aggregating regional data produced 
sample sizes that were unacceptably small for some roadway classes.  Prior to presentation of the 
overall, general effects of site aggregation on the data, an illustration is provided to show how 
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site aggregation affects a particular stretch of highway.  Table 15 shows how Tier 1 and 2 
aggregations combine disaggregate links for U.S. 29 in the Northern Virginia District.  The 
functional classification data field ensures that rural and urban sites are not aggregated together.  
For Tier 1 aggregation, the lane data field terminates aggregation when the number of lanes 
changes.  For Tier 2 aggregation, this data field terminates aggregation only when a two-lane site 
becomes a multilane site or vice versa.  The facility data field terminates aggregation whenever a 
divided site becomes undivided or vice versa and also filters out any sites with full or partial 
control of access.  The AADT data field determines whether aggregation should be terminated 
based on traffic volume.  Finally, a combination of data fields (route prefix, route number, route 
suffix, start mile post, and end mile post) checks for geographic proximity and continuity.  The 
results in Table 15 clearly show that the aggregation process results in many short links being 
combined into a homogeneous longer link. 

 
Table 15.  Demonstration of Site Aggregationa 

Route 
Prefix 

Route 
No. 

Start 
MP 

End 
MP 

Functional 
Classification 

No. of 
Lanes 

Facility 
Type 

2007 
AADT 

No. of 
2007 

Fatal + 
Injury 

Crashes 

No. of 
2007 
Total 

Crashes 
Disaggregate Sites 
  US 29 224.81 225.08 E 3 1 18087 1 3 
  US 29 225.08 225.1 E 4 1 18087 0 0 
  US 29 225.1 225.13 E 4 1 18087 0 1 
  US 29 225.13 225.6 E 4 1 18087 2 3 
  US 29 225.6 225.65 E 4 1 18087 0 0 
  US 29 225.65 225.72 E 4 1 18087 0 1 
  US 29 225.72 225.83 E 4 1 18087 1 3 
  US 29 225.83 225.85 E 4 1 18087 0 0 
  US 29 225.85 226.13 E 4 1 18087 0 2 
  US 29 226.13 226.41 E 4 1 18087 0 1 
  US 29 226.41 226.43 E 4 1 18087 0 0 
  US 29 226.43 226.46 E 4 1 18087 0 0 
  US 29 226.46 226.5 E 4 1 18087 0 1 
  US 29 226.5 226.62 E 4 1 18087 0 1 
  US 29 226.62 226.76 E 4 1 18087 1 2 
  US 29 226.76 226.79 E 4 1 18087 1 3 
  US 29 226.79 226.95 E 4 1 18087 0 1 
  US 29 226.95 227 E 4 1 18087 0 0 
  US 29 227 227.23 E 4 1 18087 0 2 
After Tier 1 Aggregation 
  US 29 224.81 225.08 E 3 1 18087 1 3 
  US 29 225.08 227.23 E 4 1 18087 7 32 
After Tier 2 Aggregation 
  US 29 224.81 227.23 E Multi 1 18087 8 35 

MP = mile post, AADT = annual average daily traffic. 
aFunctional classification and facility type codes are defined in Tables 2 and 3, respectively. 
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Table 16 summarizes the effects of Tier 1 and 2 aggregation on the six roadway types.  It 
shows that the number of sites prior to site aggregation was simply the number of disaggregate 
roadway inventory links.  Site aggregation combined the disaggregate roadway inventory links 
whenever possible in accordance with the rules outlined earlier to produce sites that were fewer 
in number but greater in length.  Both Tier 1 and 2 aggregations greatly reduced the number of 
sites.  As expected, Tier 2 aggregation produced a higher level of aggregation.  As may be seen, 
the number of aggregated sites is always greater than the number of TMS AADT links, with 
changes in AADT terminating aggregation as explained earlier.  Therefore, under no 
circumstance could the aggregation process combine links to produce fewer sites than there were 
distinct TMS AADT links.  

 
 Table 17 provides additional information on the impact of the aggregation process.  Since 
aggregation decreased the number of sites without affecting the total number of centerline miles 
in the system, the average lengths of the aggregated sites were generally far greater than those of 
the disaggregated sites.  Table 17 shows that aggregation always increased the mean site length 
for each roadway type.  Aggregation did not, however, eliminate all extremely short links since 
the minimum site length of every road type remained unchanged.  Table 17 also shows that the 
differences between Tier 1 and 2 aggregations were minor in some cases and nonexistent in 
others.  Specifically, in the case of the rural and urban two-lane categories, Tier 1 and 2 
aggregation produced identical outcomes.    
 
 

Table 16.  Number of Sites by Different Aggregation Levels 
No.  of Sites   

 
Roadway Type 

No. of 
Centerline 

Miles 

No. of TMS 
AADT 
Links 

Pre-
Aggregation

Tier 1 
Aggregation 

Tier 2 
Aggregation 

Rural two-lane 4579.48 1611 11587 1698 Same as Tier 1 
Rural multilane divided 1311.58 643 3932 761 697 
Rural multilane undivided 256.01 239 1039 295 281 
Urban two-lane 261.66 215 1572 231 Same as Tier 1 
Urban multilane divided 398.02 432 3186 615 462 
Urban multilane undivided 105.51 146 901 180 167 
Total 6912.26 3286 22217 3780 3536 

TMS = Traffic Monitoring System, AADT = annual average daily traffic. 
     
 

Table 17. Effect of Aggregation on Site Lengths 
Pre-Aggregation 

Lengths (mi) 
 

Tier 1 Lengths (mi) 
 

Tier 2 Lengths (mi) 
 
 

Roadway Type Min. Max. Mean Min. Max. Mean Min. Max. Mean 
Rural two-lane 0.01 10.35 0.4 0.01 12.7 2.7 Same as Tier 1 
Rural multilane divided 0.01 3.29 0.33 0.01 9.6 1.72 0.01 9.6 1.88 
Rural multilane undivided 0.01 3.83 0.25 0.01 6.29 0.87 0.01 6.29 0.91 
Urban two-lane 0.01 2.34 0.17 0.01 5.73 1.13 Same as Tier 1 
Urban multilane divided 0.01 1.74 0.12 0.01 7.07 0.65 0.01 7.26 0.86 
Urban multilane undivided 0.01 2.08 0.12 0.01 3.07 0.59 0.01 3.07 0.63 
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 Table 18 reveals another significant effect of site aggregation.  The table shows the 
negative binomial dispersion parameters for every statewide dataset before and after site 
aggregation.  The dispersion parameters for the aggregated sites are consistently lower than those 
for the disaggregate sites.  Since the variance of a negative binomial distribution is a function of 
its negative binomial dispersion parameter and its mean, the lower dispersion parameters indicate 
that site aggregation substantially reduced the variance of every dataset.  This result is not 
surprising in light of the assertions put forth by Lord et al. (2005).  They claimed that 
overdispersion, characterized by excess zeros, may be caused by “sites with a combination of 
low exposure, high heterogeneity” and “analyses with small time or spatial scales.”  It is not 
unreasonable to assume that site aggregation mitigated the effects of both of these factors by 
increasing the site exposure levels and the spatial scale of analysis.  It is also noteworthy to 
compare the Tier 1 and 2 dispersion parameters.  In five of eight cases, the Tier 2 dispersion 
parameters actually were slightly higher.  In the three other cases, however, the Tier 2 dispersion 
parameters were lower.  This result indicates that the additional aggregation that occurred with 
the Tier 2 approach relative to the Tier 1 approach had a negligible to slightly negative effect.  It 
also suggests that the Tier 2 approach of combining multilane links and combining links with 
different functional classifications may not have been appropriate.  Links may have been 
combined when they should not have been, increasing the variance of the category’s crash data.     
         

Table 18. Negative Binomial Dispersion Parameter by Site Aggregation Level 
Model Dispersion Parameter 

 
Region 

Rural/ 
Urban 

 
Class 

 
Crash Type 

Pre-
Aggregation

Tier 1 
Aggregation 

Tier 2 
Aggregation 

Total 0.5498 0.19 Two-lane 
FI 0.5204 0.1767 

Same as Tier 1 

Total 0.8451 0.3095 0.3156 Multilane divided 
FI 0.8602 0.1843 0.1946 
Total 1.1617 0.4373 0.3688 

Rural 

Multilane undivided 
FI 1.1307 0.2984 0.3228 
Total 1.0419 0.3749 Two-lane 
FI 0.9393 0.282 

Same as Tier 1 

Total 1.2956 0.8014 0.728 Multilane divided 
FI 1.4103 0.6399 0.5526 
Total 1.3506 0.6446 0.6564 

State 

Urban 

Multilane undivided 
FI 1.3018 0.5289 0.5407 

FI = Fatal + Injury. 
 

 
Data Assignment to Estimation and Validation Datasets 

 
As described earlier, random sampling was used in SAS to divide every dataset into an 

estimation set (consisting of 70% of the data) and a validation set (consisting of 30% of the data).  
To help ensure that the estimation datasets and their corresponding validation datasets were 
similar with respect to traffic volume and crash occurrence, nonparametric tests were performed 
using a 0.20 significance level.  Whenever the two-sided p-value for a nonparametric test was 
below 0.20, the random sampling was repeated.   
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There were, however, two exceptions to this rule in the regional datasets.  In the North 
region urban multilane undivided disaggregate dataset, the highest two-sided p-value from 
repeated random samplings for the Kuiper test on traffic volume was 0.1991.  The other 
nonparametric tests for this random sampling produced p-values higher than 0.40.  Such high p-
values in all the other nonparametric tests strongly contradicted the Kuiper test results.  Further, 
the Kuiper test results could have been due to the low sample size because this regional dataset 
covered a relatively small number of centerline miles of roadway (see Table 12).  Therefore, this 
exception was allowed.  In the East urban multilane undivided disaggregate dataset, the highest 
two-sided p-value from repeated random samplings for the Kuiper test on traffic volume was 
0.0947.  This exception was permitted for the same reasons that the previous exception was 
allowed.  The two anomalies in the regional disaggregate database notwithstanding, the 
separation of data into estimation and validation datasets proceeded smoothly.  This result was 
crucial because improper assignment of data into estimation and validation datasets would have 
adversely impacted the regression analysis and GOF evaluation.   

 
 

SPF Development Using Disaggregate Data 
 

 Through the use of GEEs in SAS, SPFs were first generated for the disaggregate data.  As 
stated earlier, each of these SPFs took the SafetyAnalyst SPF model form shown in Equation 28.  
More precisely, SPFs were generated using the estimation datasets in the disaggregate database.  
SAS provided an estimate for the two regression parameters required for the selected model form 
as well as the standard error of each estimated parameter.  An SPF was generated for each of the 
six major roadway types based on statewide data, and Table 19 shows the regression parameters 
and standard errors for the resulting statewide models.  Afterward, SPFs were generated for each 
of the three geographic regions defined earlier.  Tables 20, 21, and 22 show the estimated 
regression parameters and standard errors for the North, West, and East/Central regions, 
respectively.  The four tables also indicate the number of sites in the estimation and validation 
datasets.  
  

κ = ea × ADTb × SL                  [Eq. 28] 
 

where 
 κ = predicted number of accidents at a site per year 

a = intercept 
b = coefficient of ADT  
ADT = average daily traffic of a site (veh/day) 
SL = segment length (mi). 
 
Figures 2 through 5 graphically illustrate a few representative SPF models.  In every 

graph, each regional SPF curve extends only to the maximum AADT observed in its regional 
database.  For example, the SPF for the West region in Figure 2 extends only to an AADT of 
25,482 because that was the maximum AADT for rural two-lane roads in the West region.  
Although not shown in any of the tables, the p-value for all regression parameters in this study 
was 0.0001.  This result indicated that the AADT and the intercept were statistically significant 
factors in every dataset.                         
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Table 19. Safety Performance Functions Based on Statewide Disaggregate Data 
 
 

Model Definition 

 
GEE Parameter 

Estimates 

 
 

Standard Error 

No.  of Sites in 
Estimation and 
Validation Sets 

 
Region 

Rural/ 
Urban 

 
Class 

Crash 
 Type 

 
a 

 
b 

 
a 

 
b 

 
70% 

 
30% 

Total -6.2083 0.8467 0.1429 0.0178 8111 3476 Two-lane 

FI -6.4065 0.7606 0.162 0.0199 8111 3476 

Total -7.1042 0.9198 0.4737 0.0505 2753 1179 Multilane divided 

FI -7.9927 0.9108 0.5322 0.0563 2753 1179 

Total -7.7241 1.0140 0.6188 0.0691 728 311 

Rural 

Multilane 
undivided FI -9.3341 1.0838 0.7503 0.0831 728 311 

Total -6.0865 0.8916 0.4617 0.0511 1101 471 Two-lane 

FI -6.7668 0.8525 0.6099 0.0665 1101 471 

Total -6.5292 0.9764 0.5803 0.0564 2231 955 Multilane divided 

FI -7.7037 0.9834 0.5801 0.0561 2231 955 

Total -7.0440 1.0517 1.0829 0.1075 631 270 

State 

Urban 

Multilane 
undivided FI -9.0901 1.1513 1.0433 0.1036 631 270 

GEE = generalized estimating equation, FI = Fatal + Injury. 
 

 
Table 20. Safety Performance Functions for Disaggregate Data in North Region 

 
 

Model Definition 

 
GEE Parameter 

Estimates 

 
 

Standard Error 

No.  of Sites in 
Estimation and 
Validation Sets 

 
Region 

Rural/ 
Urban 

 
Class 

Crash 
 Type 

 
a 

 
b 

 
a 

 
b 

 
70% 

 
30% 

Total -5.6955 0.8012 0.4674 0.0536 714 305 Two-lane 

FI -6.7320 0.7985 0.7985 0.0674 714 305 

Total -7.3780 0.9639 1.3230 0.1359 333 142 Multilane divided 

FI -8.9210 1.0080 1.3455 0.1381 333 142 

Total -8.1492 1.0813 5.7970 0.6204 20 8 

Rural 

Multilane 
undivided FI -18.8528 2.1077 9.8954 1.0641 20 8 

Total -3.5915 0.6364 1.6057 0.1699 227 96 Two-lane 

FI -4.4427 0.6032 1.9616 0.2051 227 96 

Total -4.0876 0.7446 0.8828 0.0836 917 393 Multilane divided 

FI -5.9680 0.8218 0.8480 0.0801 917 393 

Total -5.2604 0.8917 1.6787 0.1615 298 127 

North 

Urban 

Multilane 
undivided FI -6.0055 0.8659 1.6329 0.1570 298 127 

GEE = generalized estimating equation, FI = Fatal + Injury. 
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Table 21. Safety Performance Functions Based on Disaggregate Data in West Region 
 
 

Model Definition 

 
GEE Parameter 

Estimates 

 
 

Standard Error 

No.  of Sites in 
Estimation and 
Validation Sets 

 
Region 

Rural/ 
Urban 

 
Class 

Crash 
Type 

 
a 

 
b 

 
a 

 
b 

 
70% 

 
30% 

Total -5.7263 0.7897 0.1441 0.0180 5221 2237 Two-lane 

FI -6.0939 0.7254 0.1792 0.0222 5221 2237 

Total -6.2931 0.8303 0.5528 0.0592 1505 645 Multilane divided 

FI -7.3899 0.8501 0.5977 0.0637 1505 645 

Total -7.8172 1.0162 0.8018 0.0904 385 165 

Rural 

Multilane undivided 

FI -9.4295 1.0903 0.9774 0.1101 385 165 

Total -7.4098 1.0203 1.0070 0.1126 355 152 Two-lane 

FI -7.0529 0.8749 1.1469 0.1278 355 152 

Total -10.8995 1.3839 1.8127 0.1829 490 209 Multilane divided 

FI -11.1035 1.2899 1.6861 0.1693 490 209 

Total -1.2804 0.4054 3.3666 0.3475 140 59 

West 

Urban 

Multilane undivided 

FI -2.1954 0.3816 3.0053 0.3125 140 59 

GEE = generalized estimating equations, FI = Fatal + Injury. 
 
 

Table 22. Safety Performance Functions Based on Disaggregate Data in East/Central Region 
 
 

Model Definition 

 
GEE Parameter 

Estimates 

 
 

Standard Error 

No.  of Sites in 
Estimation and 
Validation Sets 

 
Region 

Rural/ 
Urban 

 
Class 

Crash 
Type 

 
a 

 
b 

 
a 

 
b 

 
70% 

 
30% 

Total -6.5402 0.8629 0.3188 0.0397 2177 933 Two-lane 

FI -7.2420 0.8401 0.3736 0.0462 2177 933 

Total -7.1249 0.9156 0.8798 0.0948 915 392 Multilane divided 

FI -8.3447 0.945 1.1448 0.1220 915 392 

Total -7.6245 1.0001 0.7888 0.0868 323 138 

Rural 

Multilane undivided 

FI -9.3673 1.0785 1.0904 0.1183 323 138 

Total -5.9634 0.8865 0.6695 0.0764 520 222 Two-lane 

FI -7.6633 0.9602 0.8532 0.0959 520 222 

Total -4.7940 0.8160 1.3150 0.1293 824 353 Multilane divided 

FI -6.1242 0.8374 1.1179 0.1093 824 353 

Total -4.3246 0.7718 2.0186 0.2054 194 83 

East/ 
Central 

Urban 

Multilane undivided 

FI -5.2591 0.7626 2.1668 0.2200 194 83 

GEE = generalized estimating equations, FI = Fatal + Injury. 
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Figure 2. Rural Two-Lane Total Crashes Safety Performance Functions for Different Regions.  AADT = 

average annual daily traffic.  
 
 
 
 

 

 
Figure 3. Disaggregate Rural Multilane Divided Total Crashes Safety Performance Functions for Different 

Regions.  AADT = average annual daily traffic. 
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Figure 4. Urban Two-lane Total Crashes Safety Performance Functions for Different Regions. AADT = 

average annual daily traffic. 
 
 
 
 
 

 
Figure 5. Urban Multilane Undivided Total Crashes Safety Performance Functions for Different Regions. 

AADT = average annual daily traffic. 
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When visually comparing the regional SPFs, one can identify a few trends.  Perhaps the 
most conspicuous is the distinct shape of the West region SPF relative to the other urban 
multilane undivided total crashes SPFs (see Figure 5).  This region’s SPF resembles a square root 
function whereas the SPFs of other regions have an almost linear or logarithmic function.  It is 
also noteworthy that the North region SPF curve is generally slightly higher than that of the 
statewide SPFs in many cases.  For example, its SPF is clearly and consistently higher in the 
rural two-lane, rural multilane divided, and urban multilane undivided categories.  In the urban 
two-lane categories, it differs in another way from the others.  Whereas the others have a nearly 
linear relationship between traffic flow and crash frequency, the SPF curve for the North region 
flattens out as the traffic volume increases (see Figure 4).   

 
It is interesting to observe the trends with respect to the regression parameter b across 

different regions.  In the North and East/Central regions, the parameter is consistently below 1 
for all urban cases.  This suggests that crash frequency levels off as AADT increases in those 
highly urbanized areas.  For the West region, the parameter fluctuates from well above 1 for the 
urban multilane divided to well below 1 for the urban multilane undivided case.  This indicates 
that the relationships between traffic volume and crash frequency in urban multilane divided 
primaries and urban multilane undivided primaries are different in the West region.             

 
All these apparent trends may not be statistically meaningful because the standard errors 

of the regression estimates have not yet been considered.  One way to do so would be to plot the 
95% confidence intervals for the regression parameter estimates for the statewide models and 
then ascertain if the parameter estimates of the regional models fall within the confidence 
intervals.  Doing so indicates that regional models were significantly different from the statewide 
models in the following SPF categories:  

 
• West region in the rural two-lane total crashes category  
• East/Central region in the rural two-lane FI crashes category  
• North and West regions in the urban two-lane total crashes category  
• North region in the urban two-lane FI crashes category  
• all three regions in the urban multilane divided total crashes category  
• West and East/Central regions in the urban multilane divided FI crashes category 
• West and East/Central in the urban multilane undivided total crashes category 
• all three regions in the urban multilane undivided FI crashes category.   

 
None of the other regional models had parameter estimates that were significantly 

different from those of the corresponding statewide model.  Of the 36 regional models, only 15 
were significantly different from their corresponding statewide models.  Based on this standard 
error analysis, the general trends regarding the parameter b and the visual evaluation of the 
graphs described earlier cannot be dismissed and may indeed be statistically meaningful.  
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Developed SPFs 
 
As mentioned earlier, SafetyAnalyst has a corridor screening methodology that performs 

data aggregation; however, its methodology has important limitations.  In SafetyAnalyst’s 
corridor screening approach, “sites are aggregated to investigate the accident history of roadway 
segments, intersections, and/or ramps” so that “sites with a common corridor number are 
analyzed as a single entity” (FHWA, 2006).  Even though each corridor is considered a single 
entity, the actual computations are performed on a site-by-site basis (i.e., one intersection or 
segment at a time) (FHWA, 2006).  The site-by-site computations for all the entities in a corridor 
are then combined using either Equation 29 or Equation 30 depending on the desired unit of 
measure (i.e., average crashes per mile per year or average crashes per million VMT per year) 
(FHWA, 2006).     
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where 
 
 I = total number of sites in corridor 

Yi = total number of years of available data at site i 
SLi = roadway segment length (mi) under consideration at site i (SLi = 0 for all 
intersection and ramp sites) 
Ki,y(TOT) = observed number of total accidents at site i during year y 
ADTi,y = average daily traffic for site i during year y. 
 
There are a number of limitations with SafetyAnalyst’s corridor screening approach.  A 

measure of annual crashes per million VMT is essentially a crash rate.  Therefore, using this unit 
to compare the safety performance of different corridors presents the same problems as using any 
crash rate–based network screening method.  Comparing corridors in terms of annual crashes per 
mile is also problematic because traffic volume is not taken into account at all.    

 
Second, unlike SafetyAnalyst’s network screening module for segments, intersections, 

and ramps, the corridor screening approach relies solely on observed crash data.  As a 
consequence, the corridor screening approach cannot use the EB method to estimate the expected 
crash frequency of a site.  In the EB method, the expected crash frequency is approximated by a 
weighted average of the observed crash data for a particular site and the crash frequency 
expected for similar sites given by an appropriate SPF (Hauer et al., 2002).  Since the EB method 
“corrects for the regression-to-the-mean problem” and adds precision to safety estimation when 
observed crash data are limited (Hauer et al., 2002), the failure to use the EB method represents a 
disadvantage of SafetyAnalyst’s corridor screening approach.      
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 Even if the corridor screening approach had the ability to use the EB method, it would 
still have another drawback.  On a fundamental level, this screening technique essentially uses a 
pseudo-microscopic approach because it first analyzes individual entities (i.e., segments, 
intersections, and ramps) one at a time and only afterward aggregates the resulting computations.  
Assuming it had a built-in EB capability, it would use the disaggregate SPFs to analyze segments 
and intersections individually and then combine the results afterward.  On the other hand, a more 
holistic corridor screening methodology would first aggregate entities into corridors, generate 
SPFs based on those corridors, and then analyze those corridors using the EB method.  In this 
case, the corridor would be analyzed as a single entity, rather than as an aggregation of short 
segments and intersections.  This approach may better capture the characteristics of the corridors 
and identify potentially problematic corridors for further highway safety analyses since 
interactions between the segments and intersections would be explicitly considered in the SPF.  
This approach would appear to be appropriate for planning-level analyses. 
   
 For the macroscopic level SPFs, the general strategy where the roadway entities were 
first aggregated using the Tier 1 and 2 techniques was applied.  Afterward, the same regression 
analysis that was applied to the disaggregate dataset was repeated for the aggregated datasets.  
Tables 23 and 24 present the resulting SPFs for the Tier 1 and 2 aggregation data, respectively.  
Since Tier 1 and 2 aggregation had identical results for the rural two-lane and urban two-lane 
datasets, the resulting SPF models generated from these datasets were identical.     
 
 After the SPFs from statewide disaggregate data, Tier 1 aggregate data, and Tier 2 
aggregate data were plotted, a clear trend emerged.  Aggregation of site data generally tended to 
shift an SPF curve downward.  Of the 12 SPFs generated for each aggregation level, 11 SPFs 
exhibited a downward shift.  The only exception was the urban multilane divided FI crashes 
category in which there was virtually no divergence among the three aggregation levels.  In the 
11 cases where divergence was present, the estimate for regression parameter a, regression 
parameter b, or both regression parameters decreased after the site data were aggregated.  This 
        

Table 23. Safety Performance Functions Based on Statewide Tier 1 Aggregation Data 
 
 

Tier 1 Aggregation 

 
GEE Parameter 

Estimates 

 
 

Standard Error 

No.  Sites in 
Estimation and 
Validation Sets 

 
Region 

Rural/ 
Urban 

 
Class 

Crash 
Type 

 
a 

 
b 

 
a 

 
b 

 
70% 

 
30% 

Total -5.9128 0.8039 0.1709 0.0212 1189 509 Two-lane 
FI -6.2090 0.7317 0.1810 0.0220 1189 509 
Total -6.5827 0.8577 0.6459 0.0696 533 228 Multilane 

divided FI -7.6249 0.8646 0.4660 0.0493 533 228 
Total -7.7369 1.0055 0.7325 0.0816 207 88 

Rural  

Multilane 
undivided FI -8.7136 1.0060 0.8041 0.0883 207 88 

Total -6.5371 0.9215 0.8199 0.0923 162 69 Two-lane 
FI -6.6792 0.8322 0.7296 0.0808 162 69 
Total -6.2938 0.9524 0.9942 0.0974 431 184 Multilane 

divided FI -8.4897 1.0566 0.8584 0.0835 431 184 
Total -6.3596 0.9525 1.2604 0.1260 126 54 

State 

Urban 

Multilane 
undivided FI -9.7041 1.1847 1.1015 0.1102 126 54 

GEE = generalized estimating equations, FI = Fatal + Injury. 
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Table 24. Safety Performance Functions Based on Statewide Tier 2 Aggregation Data 
 
 

Tier 2 Aggregation 

 
GEE Parameter 

Estimates 

 
 

Standard Error 

No.  Sites in 
Estimation and 
Validation Sets 

 
Region 

Rural/ 
Urban 

 
Class 

Crash 
Type 

 
a 

 
b 

 
a 

 
b 

 
70% 

 
30% 

Total Two-lane 
FI 

Same as Tier 1 

Total -5.6866 0.7620 0.6307 0.0673 488 209 Multilane 
divided FI -7.3535 0.8364 0.5583 0.0589 488 209 

Total -7.9046 1.0196 0.7550 0.0856 197 84 

Rural  

Multilane 
undivided FI -8.5893 0.9914 0.8353 0.0928 197 84 

Total Two-lane 
FI 

Same as Tier 1 

Total -6.4267 0.9554 1.0048 0.0989 324 138 Multilane 
divided FI -8.5615 1.0588 0.8740 0.0857 324 138 

Total -5.8366 0.9057 1.3634 0.1364 117 50 

State 

Urban 

Multilane 
undivided FI -7.6810 0.9882 1.1826 0.1176 117 50 

GEE = generalized estimating equation, FI = Fatal + Injury. 
 
pattern was more pronounced in some cases than in others.  The most noticeable divergence 
between the disaggregated and the aggregated SPFs was seen in the urban multilane undivided 
total crashes category.  Figure 6 shows the SPF generated for each aggregation level in this 
category.  In many of the other 10 cases, the divergence was visible but less extreme.  An 
example of this is shown in Figure 7.     
 
 In order to explain the cause of this trend in site aggregation, the urban multilane 
undivided total crashes category (the most extreme case) was examined more closely.  It was 
hypothesized that this general trend of divergence could be understood most easily by analyzing  
 

 
Figure 6. Urban Multilane Undivided Total Crashes Safety Performance Functions by Aggregation Level.  

AADT = average annual daily traffic. 
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Figure 7. Rural Multilane Divided Total Crashes Safety Performance Functions by Aggregation Level.  

AADT = average annual daily traffic. 
  
 
the most extreme instance of divergence.  The first step taken in this analysis was to plot the 
disaggregate SPFs and Tier 1 aggregate SPFs along with the estimation data points from which 
each was derived.  The resulting plots are shown in Figures 8 and 9.  These graphs show that site 
aggregation produced fewer sites with lower crash counts on a per mile basis.  They also seem to 
indicate that site aggregation eliminated numerous outliers.  For instance, the maximum data 
point drops from about 900 crashes/mi/yr in Figure 8 to less than 250 crashes/mi/yr in Figure 9.   

 
 

 
Figure 8.  Normalized Safety Performance Functions and Data Points for Statewide Urban Multilane 

Undivided Total Crashes Category Before Aggregation.  AADT = average annual daily traffic. 
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Figure 9.  Normalized Safety Performance Functions and Data Points for Statewide Urban Multilane 
Undivided Total Crashes Category After Tier 1 Aggregation.  AADT = average annual daily traffic. 

 
 
The outliers in these normalized graphs result from sites with extremely short lengths (e.g., 0.01 
mi) because their crash counts normalized for length become exceedingly high.   

 
 None of these normalized graphs fully explains the underlying cause of the divergence 
trend.  It is important to recall at this point that none of the SPFs generated in this study used 
normalized data during model construction.  As the SPF model form indicates, site length was a 
variable that was explicitly taken into account when SPFs were generated.  As a consequence, 
the graphs that normalized the data points with respect to length (Figures 8 and 9) do not fully 
illustrate the situation.  For example, sites with an extremely short length are visually depicted as 
extreme outliers in Figure 8.  As a result, these normalized graphs give the impression that these 
short sites have an extremely strong upward influence on the SPFs being developed.  In reality, 
the influence of these short sites is not that extreme since the SPFs generated in SAS did not use 
crash data normalized by site length.  To avoid any false impressions caused by normalizing data 
and to understand better the underlying dynamics behind site aggregation, three-dimensional 
graphs were created with length as the third axis.           
 
 The disaggregated crash data were first plotted in a three-dimensional form as shown in 
Figure 10.  Similarly, the Tier 1 aggregated crash data were plotted as shown in Figure 11.   
These figures illustrate the two fundamental forces in the site aggregation process better than the 
normalized graphs in Figures 8 and 9.  Site aggregation, by combining similar, adjacent sites 
together, generally increases site lengths and site crash counts.  These two forces have opposing 
effects on SPF development.  Assuming no change in crash counts, increasing site lengths would 
pull an SPF curve downward.  Assuming no change in site lengths, increasing crash counts 
would push an SPF curve upward.  The more dominant of these opposing forces determines the 
net effect of the aggregation process on the SPF.  In other words, if site aggregation increases 
site lengths to a greater degree than it increases crash counts, the net effect of the aggregation 
would be to pull the SPF curve downward.  If site aggregation increases crash counts to a greater  



 
 

41

 
Figure 10.  Three-Dimensional Graph of Disaggregate Urban Multilane Undivided Data.  TOTCRSH = total 

number of crashes on segment per year, AADT = average annual daily traffic. 
 

 
Figure 11.  Three-Dimensional Graph of Urban Multilane Undivided Tier 1 Aggregated Data.  TOTCRSH = 

total number of crashes on segment per year, AADT = average annual daily traffic. 
 

 
degree than it increases site lengths, the net effect of the aggregation would be to push the SPF 
curve upward.  The former situation proved to be the case for the urban multilane undivided total 
crashes category and 10 other SPF categories.  Three-dimensional representations of the 
disaggregate and Tier 1 aggregate SPFs for the urban multilane undivided category are shown in 
Figures 12 and 13, respectively.  A comparison of these figures illustrates the downward 
influence of site aggregation on the SPF. 
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Figure 12.  Three-Dimensional Graph of Disaggregate Urban Multilane Undivided Safety Performance 

Function.  AADT = average annual daily traffic. 
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Figure 13.  Three-Dimensional Graph of Urban Multilane Undivided Tier 1 Aggregated SPF.  

AADT = average annual daily traffic. 
 

A limitation of SPFs identified in the literature review may have a direct bearing on these 
findings.  Lord and Persaud (2004) asserted that urban corridors display a nonlinear relationship 
between length and crash counts.  In the current study, the relationship between length and crash 
counts was assumed to be linear in every instance since this is what is assumed by SafetyAnalyst 
models.  Assuming a nonlinear relationship during the SPF development of the urban datasets 
could have altered the findings regarding the effects of site aggregation on SPFs.  For instance, if 
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a regression parameter had been estimated for the length variable in the urban multilane divided 
SPFs, the outcome of site aggregation might have been different.  Under that scenario, site 
aggregation might not have had the downward effect on the urban multilane divided SPFs curve. 

 
 

Goodness of Fit 
 

 As defined earlier, five GOF statistics were selected for this study.  Of these five, the 
Freeman-Tukey R2 was especially useful because the developers of SafetyAnalyst selected this 
statistic to evaluate their SPFs.  Table 25 shows the Freeman-Tukey R2 values for SPFs 
constructed in this study from the disaggregate statewide and regional data.  Table 26 shows the 
Freeman-Tukey R2 values for SafetyAnalyst’s road segment SPFs.   
 

There are a number of noteworthy differences regarding the Freeman-Tukey R2 values 
determined in this study versus those adopted by SafetyAnalyst.  The Freeman-Tukey R2 values 
from SafetyAnalyst are substantially higher than the corresponding values in this study with the 
exception of the urban multilane divided category.  The generally inferior model fit found in this 
study is not surprising.  The study included intersection-related crash data without explicitly 
accounting for intersection-related variables in the SPF model form.  Another difference is that 
the multilane undivided SPFs had a worse fit than multilane divided SPFs in this study whereas 
the same pattern was not true for SafetyAnalyst.  Moreover, the urban multilane undivided 
category had the worst model fit of any category in this study and the urban multilane divided 
category had the worst model fit in SafetyAnalyst.  These and other differences may also be 
attributed to intersection-related modeling omissions and small sample sizes.  There are also 
several similarities between the two sets of models, however.  In both cases, the rural two-lane 
SPFs had the highest level of model fit and the rural multilane divided SPFs had the second 
highest.  The rural SPFs generally had a better model fit than the urban SPFs in both cases.   

 
 

Table 25. Freeman-Tukey R2 Values for Disaggregate Statewide and Regional Safety Performance Functions 
Statewide North West East/Central Safety Performance Function 

Category 70% 30% 70% 30% 70% 30% 70% 30%
Total 0.284 0.28 0.274 0.301 0.301 0.279 0.227 0.216 Two-lane 
FI 0.176 0.158 0.149 0.179 0.188 0.176 0.155 0.119 
Total 0.222 0.256 0.181 0.156 0.222 0.298 0.207 0.167 Multilane 

divided FI 0.145 0.177 0.117 0.105 0.135 0.217 0.147 0.118 
Total 0.110 0.009 0.287 -0.544 0.171 0.109 0.052 0.037 

Rural  

Multilane 
undivided FI 0.081 -0.052 0.186 -0.385 0.114 0.033 0.025 0.091 

Total 0.070 0.041 0.059 0.130 0.146 0.102 -0.077 -0.046 Two-lane 
FI 0.036 0.048 0.071 0.099 0.087 0.072 -0.030 -0.073 
Total 0.066 0.048 0.090 -0.003 0.179 0.140 0.010 -0.034 Multilane 

divided FI 0.030 0.002 0.048 -0.058 0.146 0.081 -0.027 -0.057 
Total -0.120 -0.142 -0.169 -0.558 0.064 -0.259 -0.295 -0.648 

Urban 

Multilane 
undivided FI -0.059 -0.032 -0.037 -0.306 0.053 -0.228 -0.211 -0.481 

FI = Fatal + Injury. 
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Table 26. Freeman-Tukey R2 Values for SafetyAnalyst’s Segment-Based Safety Performance Functions 
Site Description State Crash Severity Safety Performance Function RFT

2 
Total κ = e-3.63 × AADT0.53 × SL 0.725 Rural two-lane Ohio 
FI κ = e-4.86 × AADT0.53 × SL 0.599 
Total κ = e-3.17 × AADT0.49 × SL 0.465 Rural multilane undivided arterials North Carolina 
FI κ = e-4.20 × AADT0.50 × SL 0.459 
Total κ = e-5.05 × AADT0.66 × SL 0.498 Rural multilane divided arterials Minnesota 
FI κ = e-7.46 × AADT0.72 × SL 0.372 
Total κ = e-7.16 × AADT0.84 × SL 0.136 Urban two-lane Ohio 
FI κ = e-8.84 × AADT0.89× SL 0.140 
Total κ = e-10.24 × AADT1.29 × SL 0.235 Urban multilane undivided arterials Washington 
FI κ = e-12.07 × AADT1.39 × SL 0.258 
Total κ = e-11.85 × AADT1.34 × SL 0.014 Urban multilane divided arterials Ohio 
FI κ = e-14.87 × AADT1.52 × SL 0.022 

FI = Fatal + Injury. 
Source:  Federal Highway Administration.  SafetyAnalyst User’s Manual. Turner-Fairbank Highway 
Research Center, McLean, VA, 2006. 
 

 Notable observations can also be made by comparing the different regional models.  It 
must first be noted that the results of the North rural multilane undivided categories must be 
considered with a high degree of skepticism because of that category’s extremely low sample 
size of 28 total sites.  Comparing the regional model fits, one observes that the West region 
generally tends to have the highest Freeman-Tukey R2 values.  This result is reasonable when 
one considers the role of intersections in this context.  The West region has more rural areas than 
the other regions in the state.  Since rural areas tend to have lower intersection densities, this 
region suffers the least from the detrimental effects of not separating intersection-related crashes 
and developing specific SPF models for intersections.  The same reasoning could be applied to 
explain why the rural SPFs generally have higher Freeman-Tukey R2 values than the urban SPFs 
in every region.   

 
An encouraging observation that can be made based on Table 25 is that the validation 

Freeman-Tukey R2 values track closely with the estimation Freeman-Tukey R2 values for most 
SPF categories.  This observation suggests that the SPFs have not likely been over-fit to the 
estimation data.  As for the exceptions, they occur in SPF categories with lower sample sizes; 
therefore, overfitting may not necessarily be the cause of the divergence between the values.         
   

GOF statistics were also computed for each aggregate SPF.  Table 27 displays the 
Freeman-Tukey R2 values of every statewide model for each aggregation level alongside the 
corresponding values reported for the base models in SafetyAnalyst.  This table shows that site 
aggregation causes a drastic improvement in model fit based on this metric.  The Freeman-Tukey 
R2 values for the Tier 1 and 2 SPFs are much higher than those of the disaggregate SPFs in every 
statewide SPF category.  The differences between the Tier 1 and 2 SPFs, on the other hand, are 
usually marginal at best.  Interestingly, the Freeman-Tukey R2 values for the aggregated data 
were higher than those of the SafetyAnalyst base model for all models except the rural two-lane 
road SPFs, further indicating the benefits of aggregation.  In summary, the results indicate that 
site aggregation substantially improves model fit in terms of the Freeman-Tukey R2 statistic and 
suggest that the precise mechanism of site aggregation (i.e., Tier 1 versus Tier 2 method) is not 
exceedingly important.  
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Table 27. Statewide Freeman-Tukey R2 Values by Aggregation Level 
R2

FT 

 
Pre-Aggregation 

Tier 1 
Aggregation 

Tier 2 
Aggregation 

 
 
 

Roadway Characteristics 

SafetyAnalyst 
Segment 

SPFs 70% 30% 70% 30% 70% 30% 
Total 0.725 0.284 0.280 0.679 0.667 Two-lane 

FI 0.599 0.176 0.158 0.559 0.527 

Same as Tier 1 

Total 0.465 0.222 0.256 0.736 0.671 0.689 0.688 Multilane 
divided FI 0.459 0.145 0.177 0.674 0.625 0.637 0.631 

Total 0.498 0.110 0.009 0.611 0.477 0.602 0.513 

Rural  

Multilane 
undivided FI 0.372 0.081 -0.052 0.547 0.359 0.513 0.434 

Total 0.136 0.07 0.041 0.656 0.387 Two-lane 

FI 0.140 0.036 0.048 0.569 0.382 

Same as Tier 1 

Total 0.235 0.066 0.048 0.549 0.563 0.659 0.695 Multilane 
divided FI 0.258 0.030 0.002 0.551 0.536 0.639 0.670 

Total 0.014 -0.120 -0.142 0.624 0.637 0.574 0.670 

Urban 

Multilane 
undivided FI 0.022 -0.059 -0.032 0.634 0.598 0.586 0.621 

SPF = safety performance function, FI = Fatal + Injury. 
Numbers in bold font indicate cases where the R2

FT was greater than the base segment models used in 
SafetyAnalyst. 
 
 When alternative GOF statistics are considered, the results of site aggregation seem less 
positive.  Tables 28, 29, and 30 show the MPD values, MAD values, and MSPE values of every 
statewide model for each aggregation level.  Judging from these particular metrics, site 
aggregation generally appears to worsen model fit.  The MPB values and MAD values for the 
Tier 1 and 2 SPFs are usually higher than the values for the disaggregate SPFs.  The situation is 
even more extreme with the MSPE measure.  Site aggregation drastically increases the MSPE 
values, especially in the urban multilane SPF categories.  The last GOF statistic used was the 
Pearson R2.  The results of the Pearson R2 computations, displayed in Table 31, closely parallel 
those of the Freeman-Tukey R2 computations.  The exact values differ slightly, but the same 
patterns and trends are evident in both GOF statistics.         
 
 A feature common to almost all the SPFs is that the estimation GOF values closely mirror 
the validation GOF values.  This result suggests that overfitting is not a significant problem 
among these models.  The most notable exceptions are the Tier 1 urban multilane SPFs and Tier 
2 urban multilane undivided SPFs with respect to the MSPE (see Table 30).  The estimation 
MSPE and validation MSPE diverge substantially in these SPF categories.  Moreover, the Tier 1 
and 2 estimation MSPE values are higher than their corresponding disaggregate MSPE values.  
This result indicates that site aggregation may be producing a greater proportion of outliers in the 
urban multilane SPFs than it does in other categories.  The high error values in the urban 
multilane SPFs may also be a reflection of the nonlinear relationship between crash count and 
segment length in urban corridors.  For the purposes of network screening, however, it may be 
useful to have outliers.  This would make it easier to identify sites needing improvement.            
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Table 28. Statewide Mean Prediction Bias (MPB) Values by Aggregation Levela 
 

Pre-Aggregation 
Tier 1 

Aggregation 
Tier 2 

Aggregation 
 

Safety Performance Function 
Categories 70% 30% 70% 30% 70% 30% 

Total 0.055 0.067 0.105 0.096 Two-lane 

FI 0.010 0.026 0.011 0.041 

Same as Tier 1 

Total 0.257 0.261 0.755 0.904 0.842 0.614 Multilane 
divided FI 0.063 0.041 0.104 0.036 0.123 0.051 

Total 0.194 0.193 0.32 0.518 0.298 0.201 

Rural  

Multilane 
undivided FI 0.047 0.071 0.045 0.129 0.069 0.042 

Total 0.207 0.235 0.018 0.367 Two-lane 

FI 0.047 0.046 0.002 0.126 

Same as Tier 1 

Total 0.961 0.936 4.800 4.099 3.517 2.659 Multilane 
divided FI 0.271 0.260 1.323 0.993 1.109 1.299 

Total 1.029 0.967 0.134 -0.140 1.178 -0.015 

State 

Urban 

Multilane 
undivided FI 0.290 0.250 -0.179 -0.161 0.049 -0.085 

 FI = Fatal + Injury. 
aMPB shows the average deviation of the predicted crashes from the observed crashes.  Positive values 
indicate over-prediction, and negative values indicate under-prediction.  This shows whether there is a 
systematic bias in the predictions generated by the SPF. 

 
 

Table 29. Statewide Mean Absolute Deviation (MAD) Values by Aggregation Levela 
 

Pre-Aggregation 
Tier 1 

Aggregation 
Tier 2 

Aggregation 
 

Safety Performance Function 
Categories 70% 30% 70% 30% 70% 30% 

Total 0.666 0.662 2.197 2.061 Two-lane 

FI 0.357 0.350 1.170 1.136 

Same as Tier 1 

Total 1.180 1.188 2.978 3.507 3.465 3.375 Multilane 
divided FI 0.585 0.602 1.372 1.579 1.549 1.571 

Total 0.917 0.939 1.933 1.886 2.04 1.782 

Rural  

Multilane 
undivided FI 0.445 0.443 0.876 0.935 0.949 0.882 

Total 1.089 1.131 3.421 4.361 Two-lane 

FI 0.506 0.515 1.531 1.796 

Same as Tier 1 

Total 3.396 3.282 12.042 10.581 12.814 13.584Multilane 
divided FI 1.328 1.280 4.162 3.755 4.748 4.572 

Total 3.004 2.789 8.483 6.025 9.586 6.070 

State 

Urban 

Multilane 
undivided FI 1.210 1.150 3.378 2.546 3.737 2.686 

 FI = Fatal + Injury. 
aMAD shows the absolute average deviation of the predicted crashes from the observed crashes.  This 
indicates the average amount that the prediction deviates from the true observations. 
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Table 30. Statewide Mean Squared Prediction Error (MSPE) by Aggregation Levela 
Pre-

Aggregation 
Tier 1 

Aggregation 
Tier 2 

Aggregation 
 

Safety Performance Function 
Categories 70% 30% 70% 30% 70% 30% 

Total 1.217 1.175 11.27 9.388 Two-lane 

FI 0.376 0.363 3.153 2.862 

Same as Tier 1 

Total 3.802 3.634 22.866 31.415 29.388 27.606 Multilane 
divided FI 0.902 0.919 4.764 5.949 5.600 5.814 

Total 2.524 2.884 12.631 12.666 13.738 9.905 

Rural  

Multilane 
undivided FI 0.589 0.643 2.386 2.490 2.631 2.254 

Total 3.198 3.268 28.888 42.738 Two-lane 

FI 0.654 0.638 5.104 6.253 

Same as Tier 1 

Total 30.508 29.348 523.457 297.8 500.713 576.582Multilane 
divided FI 4.371 4.214 62.969 36.748 74.847 66.864 

Total 23.198 19.099 233.117 84.038 258.048 88.122 

State 

Urban 

Multilane 
undivided FI 3.550 3.000 39.621 15.071 43.923 19.366 

 FI = Fatal + Injury. 
aMSPE represents of the square of the deviations between the predicted number of crashes and the observed 
number of crashes.  It weights outliers more heavily than other measures, so it is a strong measure to 
indicate how many extreme outliers there are for different models. 
 

 
Table 31. Statewide Pearson R2 Values by Aggregation Levela 

Pre-
Aggregation 

Tier 1 
Aggregation 

Tier 2 
Aggregation 

 
Safety Performance Function 

Categories 70% 30% 70% 30% 70% 30%

Total 0.343 0.345 0.665 0.660 Two-lane 

FI 0.218 0.203 0.540 0.514 

Same as Tier 1 

Total 0.312 0.351 0.749 0.668 0.691 0.686 Multilane 
divided FI 0.207 0.247 0.669 0.626 0.646 0.613 

Total 0.234 0.201 0.609 0.468 0.577 0.529 

Rural  

Multilane 
undivided FI 0.177 0.111 0.566 0.355 0.523 0.460 

Total 0.223 0.185 0.628 0.303 Two-lane 

FI 0.146 0.137 0.556 0.307 

Same as Tier 1 

Total 0.226 0.242 0.621 0.632 0.674 0.670 Multilane 
divided FI 0.168 0.163 0.604 0.605 0.627 0.674 

Total 0.144 0.122 0.647 0.603 0.588 0.736 

State 

Urban 

Multilane 
undivided FI 0.126 0.115 0.646 0.576 0.597 0.648 

FI = Fatal + Injury. 
aThe Pearson R2 is a measure of the percentage of the variability in the data that is explained by the model.  
Thus, an R2 of 0.50 means that 50% of the variability in the data is explained by the model. 
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Despite the contradictory results, a general judgment could be rendered on the effect of 
site aggregation on model fit.  The GOF evaluation appears to indicate that site aggregation had a 
positive overall effect on model fit.  The Freeman-Tukey R2 values suggest that site aggregation 
had a dramatic, positive influence.  The Pearson R2 values also reflect similar drastic 
improvements associated with site aggregation.  On the other hand, the MPB values suggest that 
site aggregation had moderately negative effect on model fit whereas the MAD and MSPE 
values suggested the effect was significantly negative.  There is one other factor to consider even 
though it was not an explicit GOF statistic in this study: the negative binomial dispersion values 
for each level of aggregation (see Table 18).  Based on this metric, site aggregation has a 
significant and beneficial effect on model fit by substantially reducing the variance of a dataset.  
Thus, in light of the higher Freeman-Tukey R2 values, the higher Pearson R2, and lower 
dispersion values, site aggregation had a generally beneficial effect on model fit.      

 
Site aggregation had another more important purpose in this study: to give the safety 

analysis methodology being developed its macroscopic perspective.  To avoid the microscopic 
approach of other Virginia-specific SPF research and the limitations in SafetyAnalyst‘s corridor 
screening module, the methodology developed in this study incorporated site aggregation 
repeatedly.  At the very beginning of the methodology, roadway links were combined to produce 
aggregate sites.  During the SPF development stage, a set of SPFs was built based on the Tier 1 
and 2 aggregated sites in addition to the set of SPFs developed from disaggregate sites.                

 
Comparison with Segment-Based Virginia-Specific SPFs 
 

A comparison of the disaggregate SPFs in this study and the segment-based SPFs 
developed by Garber et al. (2010) for Virginia’s two-lane roads may also be informative.  The 
regression parameters and standard errors for the segment-based SPFs in these categories are 
included in Table 32.  Four statewide SPF categories are common to both studies:  
 

1. rural two-lane total crashes on primary system  
2. rural two-lane FI crashes on primary system 
3. urban two-lane total crashes on primary system 
4. urban two-lane FI crashes on primary system. 

 
 

Table 32. Segment Safety Performance Functions Developed for Virginia 
a b RFT

2  
Safety Performance 
Function Category 

 
Value 

Standard 
Error 

 
Value 

Standard 
Error 

 
No. of 
Sites 

 
70% 

 
30% 

Rural primary total 
crashes 

-6.8307 0.3207 0.8738 0.0385 911 0.44738 0.5126 

Rural primary FI crashes -4.496 0.387 0.5027 0.0479 911 0.28909 0.3189 
Urban primary total 
crashes 

-8.943 1.3176 1.1274 0.142 62 0.54792 0.66453

Urban primary FI crashes -8.8932 1.5738 1.0368 0.1681 62 0.46171 0.54009
F + I = Fatal + Injury. 
Source:  Garber, N.J., Haas, P.R., and Gosse, C.  Development of Safety Performance Functions for Two-Lane 
Roads Maintained by the Virginia Department of Transportation.  VTRC 10-R25.  Virginia Transportation Research 
Council, Charlottesville, 2010. 
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The statewide disaggregate regression parameters and standard errors from this study are 
included in Table 19.  Comparing these values, one can make a few observations.  Of the four 
categories compared, the regression parameters for the rural two-lane total crashes appear most 
similar.  In this category, the 95% confidence intervals for the parameters a and b from the 
segment SPFs closely overlap with those from the disaggregate SPFs.  The same could not be 
said for any of the other categories.  The most notable divergence between the regression 
parameters of the segment SPFs and the disaggregate SPFs is in the urban two-lane total crashes 
category.  In this category, the regression parameter b for the segment SPF is greater than 1, 
which implies an exponentially growing relationship between AADT and crash frequency.  For 
the same category, the regression parameter for the disaggregate SPF is less than 1.  In a general 
sense, the comparisons between the segment SPFs and the disaggregate SPFs indicate that 
separating intersection-related crashes from segment-related crashes usually has a statistically 
significant impact on the regression models.  Moreover, the divergence between the segment 
SPFs and disaggregate SPFs is most pronounced in the urban roadways categories.   
 
 When comparing the Freeman-Tukey values of the disaggregate SPFs and the segment 
SPFs, one finds numerous differences.  First, the values are consistently higher for the segment 
SPFs.  This result is expected because the disaggregate SPFs in this study were generated from 
data that included intersection-related crashes even though the model form did not explicitly 
account for intersection-related variables.  Second, the urban segment SPFs have higher 
Freeman-Tukey values than the rural segment SPFs whereas the urban disaggregate SPFs have 
lower Freeman-Tukey values than the rural disaggregate SPFs.  This difference may also be 
attributable to the inclusion of intersection-related crashes in the SPF model form.  The Freeman-
Tukey values for the aggregate SPFs developed in this study were higher than those developed 
by Garber et al. (2010), however, indicating that aggregation can overcome some of the 
detrimental effects of not separating segments and intersections.  This indicates that aggregation 
is appropriate for macroscopic level SPFs that are to be used for planning purposes. 

 
 

Site Prioritization 
 

 The last major task in this study was to generate and compare lists of sites with potential 
for safety improvement using both SPF-based approaches and the critical rate method.  Tier 1 
site aggregation was selected for the site prioritization task because it demonstrated 
approximately the same level of model fit as Tier 2 site aggregation without sacrificing as much 
in terms of sample size.  Further, the negative binomial dispersion parameter was often greater 
for Tier 2 data than for Tier 1 data, indicating a higher variance in the data (see Table 18).   
 

Use of the critical rate method requires the computation of an average vehicle crash rate 
(AVR) for each facility type.  The AVR for each roadway type in each district was computed in 
this study from the Tier 1 aggregated sites using data from 2003 through 2007.  The resulting 
AVR values are shown in Table 33.      

 
Two variations of SPF-based prioritization approaches emerged because of uncertainty 

regarding whether to normalize excess crash frequency by length or to leave the excess crash  
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Table 33. Annual Vehicle Crash Rate Values (crashes per 100 million vehicle miles traveled) 
Computed for Critical Rate Method 

 
 

District 

 
Rural Two-

lane 

Rural 
Multilane 
Divided 

Rural 
Multilane 
Undivided 

 
Urban 

Two-lane 

Urban 
Multilane 
Divided 

Urban 
Multilane 
Undivided 

Bristol 167.68 84.13 107.79 159.34 159.90 132.43 
Salem 156.22 91.97 130.76 210.98 169.14 246.06 
Lynchburg 140.24 80.68 115.62 165.83 127.37 118.33 
Richmond 117.76 75.55 96.35 243.37 294.42 291.11 
Hampton Roads 130.13 89.78 89.37 119.24 179.56 135.50 
Fredericksburg 119.02 78.85 153.07 177.86 190.95 241.44 
Culpeper 147.08 98.58 117.72 203.27 328.34 302.98 
Staunton 140.70 88.78 105.49 148.19 159.05 144.40 
Northern Virginia 134.99 145.50 No sites 189.68 250.73 363.20 

 
frequency on a per site basis.  Table 34 provides information regarding the crash site lists 
generated by the normalized and non-normalized SPF-based prioritization methods.  As stated 
previously, each high-crash site list represents 5% of the centerline mileage of each roadway 
category.  As the table shows, the normalized SPF method tends to identify shorter sites and 
therefore must flag many more sites to reach the 5% threshold.  The table also shows the number 
of common sites in each category.  These sites were flagged by both the normalized and non-
normalized methods and thus indicate the level of overlap between the two methods.  The level 
of overlap between the SPF methods appears to be very high across all the roadway categories.         
 
 Table 35 compares the site lists generated from the critical rate method and the non-
normalized SPF method.  From this table it is clear that the critical rate method tends to identify 
sites that are substantially shorter and that there is a moderate degree of overlap between the two 
methods.  Table 36 presents the comparison between the critical rate method and the normalized 
SPF method.  This table shows that the sites identified by the critical rate method are longer in 
the rural categories and roughly the same in the urban categories.  It also indicates a high level of 
overlap across all roadway categories.    
         

Table 34. Normalized and Non-normalized Site Prioritization Results Based on Safety Performance 
Functions, Top 5% of Miles 

 
Excess Total Crashes 

Normalized Excess Total 
Crashes 

  
 
 

Region 

  
 

Rural/ 
Urban 

  
 
 

Class 
Mean Length 

 (mi) 
No. 

 of Sites 
Mean Length 

 (mi) 
No. 

 of Sites 

  
 

Common 
Sites 

Two-lane 3.30 70 1.07 216 54 
Multilane 
divided 

2.42 28 0.54 124 20 
Rural  

Multilane 
undivided 

2.56 5 0.42 33 3 

Two-lane 1.46 10 0.63 23 8 
Multilane 
divided 

1.20 17 0.32 64 11 

State 

Urban 

Multilane 
undivided 

1.79 3 0.36 16 2 

Total 2.65 133 0.74 476 98 
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Table 35. Critical Rate and Non-normalized Safety Performance Function Method Site Prioritization Lists, 
Top 5% of Miles 

Critical Rate Method SPF Excess Total Crashes   
 

Region 

  
Rural/ 
Urban 

  
 

Class 
Mean 

Length 
No. of 
Sites 

Mean 
Length 

No. 
of Sites 

  
Common 

Sites 
Two-lane 2.64 87 3.30 70 23 
Multilane 
divided 

0.61 108 2.42 28 11 
Rural  

Multilane 
undivided 

0.60 30 2.56 5 1 

Two-lane 0.83 16 1.46 10 7 
Multilane 
divided 

0.28 73 1.20 17 8 

State 

Urban 

Multilane 
undivided 

0.34 19 1.79 3 1 

SPF = safety performance function. 
 

Table 36. Critical Rate and Normalized Safety Performance Function Method Site Prioritization Lists, Top 
5% of Miles 
 

Critical Rate Method 
SPF Excess Normalized 

Crashes 
  

 
 

Region 

  
 

Rural/ 
Urban 

  
 
 

Class 
Mean 

Length
No. of 
Sites 

Mean 
Length 

No. of 
Sites 

  
 

Common 
Sites 

Two-lane 2.64 87 1.07 216 54 
Multilane 
divided 

0.61 108 0.54 124 83 
Rural  

Multilane 
undivided 

0.60 30 0.42 33 24 

Two-lane 0.83 16 0.63 23 14 
Multilane 
divided 

0.28 73 0.32 64 53 

State 

Urban 

Multilane 
undivided 

0.34 19 0.36 16 13 

   SPF = safety performance function. 
 

To quantify better the differences between the critical rate method and the SPF-based 
methods of prioritization, the total PSI was computed for each list.  The PSI is a measure of the 
excess observed crash frequency that is above the value predicted by the SPF.  Thus, the PSI 
provides an indication of the degree to which a site deviates from what is expected based on the 
SPF that pertains to that type of site.  The total PSI value was the sum of the PSI values for all 
the individual sites.  The total PSI value for each list was also divided by the number of sites in 
the list to give an average PSI per site.  The results are presented in Tables 37 and 38.  Table 37 
compares the critical rate method and the non-normalized SPF method.  It indicates that the 
average PSI per site from the non-normalized SPF method is considerably greater than the 
average PSI from the critical rate method.  This finding suggests that the non-normalized SPF 
method is more efficient than the critical rate method at identifying sections of the primary 
system with a high PSI per site.  Table 37 shows another interesting finding.  The total PSI of the 
list generated by the critical rate method exceeds the total PSI of the list generated by the non-
normalized SPF method.  This result indicates that a prioritized list consisting of more numerous, 
shorter links has a higher total PSI than a prioritized list consisting of fewer, longer links.  Thus,  
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Table 37. Critical Rate and Non-Normalized Safety Performance Function Method Site Prioritization 
Results, Top 5% of Miles 

Critical Rate Method SPF Excess Total Crashes   
 

Region 

  
Rural/ 
Urban 

  
 

Class 
 

PSI 
No. of 
Sites 

PSI per 
Site 

 
PSI 

No. of 
Sites 

PSI per 
Site 

Two-lane 201 87 2.31 361 70 5.16 
Multilane divided 341 108 3.15 295 28 10.55 

Rural  

Multilane 
undivided 

75 30 2.49 41 5 8.20 

Two-lane 157 16 9.84 156 10 15.55 
Multilane divided 1174 73 16.08 901 17 52.97 

State 

Urban 

Multilane 
undivided 

256 19 13.48 195 3 65.13 

Total 2204 333 6.62 1949 133 14.65 
SPF = safety performance function; PSI = potential for safety improvement. 
 
it is possible to identify numerous short links with a high PSI per site that generate a high total 
PSI when summed together.  When longer links are used to prioritize the system, the PSI per 
mile declines more rapidly as one moves down the ranked list.           
 
 Table 38 compares the critical rate method and the normalized SPF method.  In this case, 
the average PSI per site is sometimes greater for the critical rate method.  However, the total PSI 
for each list is always greater for the normalized SPF method.  Since each pair of lists being 
compared has about the same number of centerline miles, the normalized SPF method identifies 
sites with a greater PSI per mile than the critical rate method does.  Thus, each SPF-based 
prioritization method has proven that it has a significant advantage over the critical rate method 
for certain applications.  The non-normalized SPF method identifies roadway sections with a 
greater average PSI per site.  The normalized SPF method identifies sections with a greater 
average PSI per mile.  If a relatively longer section with a higher average PSI per site is sought, 
the non-normalized SPF method should be used.  If a relatively short section with a higher 
average PSI per mile is sought, the normalized SPF method should be used.  Both methods have  
 

Table 38. Critical Rate and Normalized Safety Performance Function Method Site Prioritization Results, 
Top 5% of Miles 

 
Critical Rate Method 

SPF Normalized Excess Total 
Crashes 

  
 
 

Region 

  
 

Rural/ 
Urban 

  
 
 

Class 
 

PSI  
No. of  
Sites 

PSI per 
Site 

 
PSI 

No.  of 
Sites 

PSI per 
Site 

Two-lane 201 87 2.31 473 216 2.19 

Multilane divided 341 108 3.15 461 124 3.72 

Rural  

Multilane 
undivided 

75 30 2.49 89 33 2.70 

Two-lane 157 16 9.84 186 23 8.07 

Multilane divided 1174 73 16.08 1317 64 20.58 

State 

Urban 

Multilane 
undivided 

256 19 13.48 302 16 18.89 

Total 2204 333 6.62 2828 476 5.94 

SPF = safety performance function; PSI = potential for safety improvement. 
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some utility, and ultimately users would have to decide on a prioritization method that fit their 
application.  Although the PSI values were calculated in the same way, it is important that users 
be consistent when deciding whether or not to normalize PSI by length.            
 
 
 

CONCLUSIONS 
   
• It is feasible to develop disaggregate planning-level SPFs without separating intersection-

related crashes from segment-related crashes, but model fit is adversely affected in the 
process.   

 
• When disaggregate data were used, regional differences in planning-level SPFs were often 

not significant when the standard error of regression parameters was considered.  As a 
result, statewide models should be used. 

 
• Site aggregation is a valuable component in the development of SPFs for intermediate-scale 

analyses.  Site aggregation generally improves the overall model fit of SPFs and gives a more 
macroscopic perspective to the network screening analysis by combining discrete, isolated 
roadway facility entities (i.e., road segments and intersections) into sections of roadway with 
intermediate lengths.  Aggregation of segments was not possible for regional models, 
however, because of limited sample size. 

 
• Site aggregation often pulls an urban SPF curve downward because the gains in site length 

usually outweigh the gains in crash count.   The assumption of a linear relationship between 
crash count and site length may need to be reconsidered for certain urban corridors, 
especially urban multilane undivided corridors.  However, the SafetyAnalyst model form 
does not currently provide for changes in this assumption. 

 
• The advantage of an SPF-based approach over a crash rate–based approach is significant 

and quantifiable.  The SPF-based site prioritization methods used in this study generate lists 
with greater potential for safety improvement on a per site or per mile basis compared to the 
lists generated by the critical rate method depending on the prioritization method used.  In 
practical terms, this advantage should enable VDOT to identify opportunities to reduce the 
raw number of total and FI crashes in a more effective and cost-efficient way.   

 
 
 

RECOMMENDATIONS 
 
1. VDOT’s TED should use the proposed Tier 1 aggregated SPFs (shown in Table 23) to 

generate prioritized lists of high-crash sites for use in programs focused on identifying 
corridor-level safety issues.  These would include the Highway Safety Corridor Program, the 
Highway Safety Program, the Strategically Targeted Affordable Roadway Solutions 
Program, and possibly the High Risk Rural Roads Program.  For the Highway Safety 
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Corridor Program, the TED should examine the prioritized lists of aggregate sites generated 
from the SPF-based methods developed in this study to identify potential candidate primary 
corridors.  For the Highway Safety Program, the Strategically Targeted Affordable Roadway 
Solutions Program, and the High Risk Rural Roads Program, the TED should use the 
prioritized lists of aggregate sites to identify systematic problems and then use microscopic 
SPFs to pinpoint specific high-crash locations to identify potential projects.  This two-stage 
approach would be more efficient by providing a more concise list of high-crash sites than 
would be generated by strictly microscopic SPF-based methods.  The macroscopic approach 
would permit high-level visualization and analysis of candidate corridors to show where 
there are systematic problems over longer links, rather than showing a series of isolated 
intersections and segments that may be of concern. 

 
2. VDOT’s Transportation & Mobility Planning Division should consider using the SPFs 

developed in this study in the transportation project development process.  The SPFs 
developed in this study should allow for a more accurate and efficient quantification of safety 
impacts during the evaluation of alternative projects with intermediate lengths.  For example, 
the change in total or FI crash frequency could be estimated when a rural multilane corridor 
is improved from an undivided to a divided facility type.  It may be desirable to incorporate 
these models into the Statewide Planning System to assist in the identification of corridors 
with a potential for safety improvement and congestion. 

 
3. To generate prioritized site lists swiftly in the future, VDOT’s TED should explore the 

feasibility of integrating the methodology developed in this study into SafetyAnalyst.  VTRC 
would provide technical support to TED in this work.  More specifically, the feasibility of 
integrating this methodology into the network screening module of SafetyAnalyst software 
should be investigated.  This task has been made less difficult because the SPFs developed in 
this study are based on the model form used by SafetyAnalyst.  One efficient approach would 
be to work within the roadway segment screening component of the network screening 
module after appropriate adjustments are made.  For example, the default roadway segment 
SPFs in SafetyAnalyst could be replaced with the Tier 1 aggregate SPFs developed in this 
study.   

 
4. If VDOT’s TED concurs, VTRC should consider expanding this research beyond the primary 

system.  Preliminary indications from TED are that the results of this study will be useful for 
a variety of programs.  Further research to develop planning-level SPFs for secondary roads 
and freeways and expressways appears to be warranted.   

 
 
 

COSTS AND BENEFITS ASSESSMENT 
 

 By utilizing the results of this study, VDOT could benefit from improved effectiveness 
and efficiency in multiple highway safety management, operations, and planning programs.  By 
moving from a critical crash rate–based approach to an SPF-based approach to identifying 
candidate sites for safety improvements, VDOT would be able to identify locations amenable to 
countermeasures more effectively.  This would result in a more effective use of state funds and a 
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higher benefit/cost ratio for safety projects that are undertaken.  With respect to highway safety 
management, the prioritized list of high-crash sections generated in this study could aid the 
Highway Safety Corridor Program, the Highway Safety Program, and potentially the High Risk 
Rural Roads Program.  There are also likely to be significant benefits in integrating these SPFs 
into the Statewide Planning System for a variety of corridor planning projects. 

 
One possible way to quantify the benefits of using this approach is to compare the PSI 

values for the critical rate method to those generated for the aggregate SPFs for the worst 5% of 
sites analyzed.  The sites identified by the normalized SPF method had a total PSI that was 624 
crashes higher than those identified by the critical rate method.  This represented an increase of 
28.3% over the same number of centerline miles of road.  Likewise, the non-normalized methods 
identified sites that had an average PSI that was more than double that of sites identified by the 
critical rate method.   The fact that the SPF method was able to identify sites with a potential for 
safety improvement much more effectively makes it more likely that large safety improvements 
could be realized following countermeasure construction.  Ultimately, crash reductions in 
Virginia will be a function of the funding available and countermeasures selected.  However, the 
proposed methodology should enable more efficient targeting of resources for detailed 
assessment of the sites and funding of proposed improvements.  In addition, inclusion of explicit 
consideration of safety earlier in the study development process could enable safety issues to be 
addressed using other funding streams. 

    
The implementation costs associated with this study would be the time and labor 

expended by VDOT personnel to use the prioritized lists and aggregate SPFs.  For the Highway 
Safety Program, the High Risk Rural Roads Program, and the Strategically Targeted Affordable 
Roadway Solutions Program, VDOT personnel would need to analyze the prioritized lists 
generated by this study to identify candidate projects.  Since the personnel implementing these 
programs currently analyze prioritized lists generated from crash rate–based methods, the cost of 
switching one set of lists for another would not likely be substantial.  For the project 
development process, VDOT personnel would need to spend time using the aggregate SPFs to 
quantify safety impacts of alternative projects.  Since the aggregate SPFs have already been 
developed, the additional time required for such tasks should not be much greater in this case 
either.  In future years, there would also be a cost associated with calibrating the aggregate SPFs 
generated in this study to reflect constantly changing roadway conditions.  If this methodology is 
integrated into SafetyAnalyst as is recommended, this process can by performed rapidly using 
SafetyAnalyst’s built-in functions.  As a consequence, the cost associated with implementing the 
results of this study appear to be minimal and benefits could be significant. 
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