RATING AND ANALYSIS OF CONTINUOUS GIRDER BRIDGES

Ъу

F. W. Barton Faculty Research Scientist

and

H. C. Ozyildirim Research Scientist

(The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agencies.)

Virginia Highway and Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways & Transportation and the University of Virginia)

Charlottesville, Virginia

May 1980

VHTRC 80-R47

2704

BRIDGE RESEARCH ADVISORY COMMITTEE

J.	Μ.	MCCABE, JR., Chairman, Asst. Bridge Engineer, VDH&T
F.	L.	BURROUGHS, Construction Engineer, VDH&T
с.	L.	CHAMBERS, Division Bridge Engineer, FHWA
H.	L.	Kinnier, Consultant, VH&TRC
J.	G.	G. MCGEE, Construction Control Engineer, VDH&T
W.	Τ.	MCKEEL, JR., Highway Research Scientist, VH&TRC
Μ.	F.	MENEFEE, JR., Structural Steel Engineer, VDH&T
Ŀ.	L.	MISENHEIMER, District Bridge Engineer, VDH&T
R.	H.	MORECOCK, District Bridge Engineer, VDH&T
₩.	₩.	PAYNE, Professor of Civil Engineering, VPI & SU
F.	L.	PREWOZNIK, District Bridge Engineer, VDH&T
Μ.	Μ.	SPRINKEL, Highway Research Scientist, VH&TRC
F.	G.	SUTHERLAND, Bridge Engineer, VDH&T
D.	Α.	TRAYNHAM, Prestressed Concrete Engineer, VDH&T

ii

SUMMARY

Federal regulations prompted as a result of bridge failures require the rating of bridge structures for which federal funds will be utilized for rehabilitation and replacement. The large number of bridges in Virginia subject to being rated makes such a task time consuming and difficult to fulfill if manual procedures are to be used. Consequently, a study was initiated to investigate the possibility of developing an automated capability for the rating of continuous girder bridges.

A review of existing computer programs capable of rating bridges was conducted. The best candidate program, BRASS, which is a widely used general purpose rating and analysis program, was modified for convenient use by bridge engineers. Because the cost of running this program was found to be very high, a second program, BRRAT, was investigated. BRRAT was found to cost much less than BRASS, but not to be as versatile.

2766

••

RATING AND ANALYSIS OF CONTINUOUS GIRDER BRIDGES

Ъy

F. W. Barton Faculty Research Scientist

and

H. C. Ozyildirim Research Scientist

PROBLEM STATEMENT

Under the Highway Safety Act of 1968, highway officials throughout the United States are required to inspect and rate the bridges in their jurisdictions. This interest in bridge safety resulted from the collapse of the Silver Bridge across the Ohio River at Point Pleasant, West Virginia, in December 1967. Subsequently, on April 27, 1971, the National Bridge Inspection Standards were presented to all states. These standards require a bridge rating to determine the safe load-carrying capacity for each bridge on the federal-aid system. In addition, it is necessary to determine a structural rating for each bridge that, in many cases, requires a detailed analysis of the bridge structure. While these regulations require periodic ratings and analyses for only those structures on the federal-aid system, recent legislation, has extended that requirement to all offsystem bridges as well, if states are to qualify for federal money to be applied to the rehabilitation and replacement of off-system bridges.

With approximately 35,000 bridges in Virginia, this rating and analysis requirement places a tremendous demand on the manpower resources of the Bridge Division of the Virginia Department of Highways and Transportation. The analysis of data and establishment of bridge ratings by traditional manual procedures are time consuming and inefficient. Further, because bridge ratings are so important in terms of safety and maintenance requirements, extreme care and accuracy are demanded in their determination. Consequently, this study was undertaken to develop an efficient and reliable, computer-based procedure capable of handling the immense volume of work now required in the analysis of data to establish the rating of bridges.

,2700

RESEARCH APPROACH

Three alternatives for developing an automated bridge rating procedure were available. The first was to develop an entirely new computer program comprising a number of modular elements each designed to achieve a particular objective of the bridge rating and analysis. Because the development of a totally new computer package that did not utilize previously developed software would be very time consuming, extremely inefficient, and certainly not cost-effective, this alternative was given little consideration.

A second alternative was to use one of the large-scale programs that had been developed by another state agency or a private firm. This approach necessarily imposes certain constraints on the user in terms of the amount of input required and the volume of output provided. This alternative was, in fact, the one adopted initially by the Department. After careful review, the Department had chosen the BRASS program developed by the state of Wyoming. However, the input required to obtain the rating of a simple continuous girder bridge was found to be excessive and complicated and, accordingly, use of the program was limited.

A third alternative was to adopt an existing large-scale computer code having the capability for analysis and rating of various types of bridge configurations and modify it to meet the needs for the rating of a particular bridge within the Virginia system. This approach was adopted in this study.

OBJECTIVE AND SCOPE

The broad objective of the study was to develop an automated capability for the rating of continuous girder bridges of the type typically found in Virginia.

To achieve the study objective, it was decided it would be necessary to -

- review existing computer programs, such as BRASS, that have the capability of performing a variety of bridge rating and analyses;
- select the best candidate program and identify the modifications necessary to render it useful to engineers within the Bridge Division;

- develop the modifications of this program and the software necessary to make the modified program usable;
- 4. demonstrate and document the use of the
 modified program on a typical example problem;
- 5. review its performance with engineers in the Bridge Division to ascertain possible improvements in subsequent similar work.

CONDUCT OF STUDY

The five activities pursued in achieving the study objective are described under the succeeding subheadings.

<u>Review of Existing Programs</u>

A number of reviews of existing programs have been compiled and published(1, 2), and only brief descriptions of the programs considered for use in Virginia will be given here.

One of the earliest and most widely used computer programs for bridge rating is the BRASS program previously referred to.(3) This program has the capability for the design, review, or load rating of a variety of bridge types, including the deck and various portions of the superstructures. It will handle steel girders, concrete girders, concrete slabs, timber beams, and composite concrete steel girders. However, even though the system is capable of performing a variety of functions, the input necessary to define the particular features of a specific problem is excessive and complicated. In addition, because various components of this program were developed in the early 1960's, a number of the procedures used in the analysis modules are obsolete.

The Control Data Corporation developed a program called BARS for the rating of bridges. According to the corporation, the system can establish the inventory and operating rating required by the AASHTO specifications and the posting, rating, and special permit analysis required by various states using working stress methods. Another program, BRRAT, was developed by the Pennsylvania Department of Transportation specifically to compute load ratings and determine load limits on bridges. Its capabilities and the relatively simple input required for this program made it an attractive candidate, along with BRASS, for use in the present study. BRRAT will determine the inventory and operating, and safe load capacity ratings for the following types of bridges: (1) single-span, reinforced slab; (2) single-span, reinforced concrete T-beam; (3) simple and continuous span multi-girder steel girder; (4) simple and continuous span with a girderfloor beam-stringer system; and (5) simple and continuous span

Four other bridge rating programs — namely OVLOAD, developed by the New Mexico State Highway Department; MARYLAND, developed by the Maryland State Highway Department; VERMONT, developed by the Vermont State Highway Department; and OKLAHOMA, developed by the Oklahoma State Highway Department — have been developed for bridge rating and some are seeing limited use. However, these four programs have more restrictions than the three initially discussed and, after preliminary review, were not given further consideration.

Program Selection and Identification of Needed Modifications

Program Selection

After a review of programs having the desired capabilities, it was determined that the BRASS program would be the most logical candidate for modification. At the same time, the review had indicated that the BRRAT program developed by the Pennsylvania Department of Transportation might also be worthy of further consideration, since it was inherently a simpler program than BRASS in terms of input preparation. Accordingly, at this particular stage of the investigation, a dual approach was decided upon: (1) BRASS would be investigated with the idea of either modifying it internally or modifying just the input and output to provide the necessary automated capability for rating; and (2) a limited amount of study would be given to the BRRAT program in the event that some backup program might be necessary.

BRASS was selected as the primary candidate because of its ready availability, its long period of use (approximately ten years), and its widespread use. Accordingly, it was felt that the BRASS output was reliable and well checked for analysis and the rating of continuous girder bridges. Many of the other programs, such as BRRAT, had been used by relatively few states and thus their reliability and validity were considered low relative to those of the BRASS program.

Needed Modifications

In the initial stages of the project, it was planned to affect the modification to BRASS by reviewing the internal modular components of the total program, removing those components that pertained directly to a continuous girder bridge, and reassembling the program with appropriate modifications of the software. The modified program would thus be simpler, more streamlined than the original, and would not only have simplified input requirements and limited output but would also be more efficient in terms of operation. Accordingly, a significant amount of time was allocated to gaining familiarity with the internal workings of the BRASS program and identifying those parts necessary for the analysis and rating of continuous girder bridges.

The input for the BRASS program was not only unnecessarily extensive, it was confusing and at times difficult to interpret. For the analysis and rating of typical highway bridges, this program can be thought of as consisting of four major components: the structural analysis component, the structural loading component, the girder section design and review component, and the deck design and review component. Each of these components has separate distinct input which must be generated and developed separately.

The deck design component calculates actual stresses, allowable stresses, and load factors for concrete and timber decks. If this type of information is desired, the input requires all details associated with the slab itself and includes such items as thickness of the slab, percentage of tensile and compressive steel, location of the reinforcing steel, strength of the concrete and steel, and geometric details on such appurtenances as curbs and parapets. In addition, it requires a number of input items relating to the loading and the allowable stresses within the steel and concrete. The bridge engineers responsible for the rating of continuous girder bridges indicated that the deck rating was of little concern and, accordingly, this feature was deleted from the capability of the modified program. This was accomplished within the preprocessor that will be described subsequently.

The structural analysis component of the program performs all of the analysis computations required to analyze and determine stresses throughout the bridge configuration. The input for this component includes information concerning the geometry of the structure and detailed descriptions of the girder configuration,

the locations at which specific analyses are to be conducted, specific structural properties for each of the girders, and, finally, the specific type and format of output desired.

The structural loading component generates the actual loading to be used for the final rating and uses as input influence lines generated by the structural analysis component. The loading component generates both dead load and live load magnitudes, depending on the geometry of the structure and on the specific vehicle loading prescribed by the user. Input for this component includes the wheel loadings of the trucks to be used, any superimposed dead loads not included by the bridge definition prescribed earlier, and other special information or unusual loading configurations.

The girder section design review and rating component simply performs the design and rating of steel, concrete, timber, and composite sections.

If the BRASS program were to be used without modification, it is obvious that extensive input would be required to provide the information necessary for the operation of each of the above components. However, for continuous girder bridges, in which the primary concerns are with the capacity of the girders, it is obvious the desired results could be achieved with significantly less input data. It is precisely this objective that is the purpose of the preprocessor described in the following section.

Development Of Preprocessor

Subsequent to the review of the modular components of the BRASS program, two factors served to significantly change the direction of the research effort. One was that it became apparent that the task of disassembling and reassembling the component parts of the program into an efficient smaller program would be extremely difficult in view of the time and budgetary constraints on the project. More importantly, however, personnel in the Automatic Data Processing (ADP) Division of the Department, who are responsible for the upkeep and maintenance of large systems programs, did not wish the BRASS program to be modified in any way. They suggested that a preferable alternate direction would be to simply develop a preprocessor for BRASS which would accept input that would be simple and easily developed by bridge engineers but which would then generate the large amount of input data required by the BRASS program. This would permit BRASS to be operated in an unmodified state while at the same time providing for simplified input from the user's point of view. After extensive discussions with personnel in the ADP Division, it was decided to reorient the objective of the project to the development of a preprocessor for BRASS that would enable the bridge engineer to input only those data necessary for the analysis and rating of continuous girder bridges and that would generate the remaining information required by the input portion of the BRASS program. Such a development would still meet the overall objective of the study; namely, the development of a relatively simple automated capability for the rating of continuous girder bridges.

Input Requirements

As noted earlier, the input requirements for the BRASS program are exceedingly lengthy and even confusing in terms of what is required for a particular problem. For example, the input data sheets that must be completed for a problem analysis by BRASS are shown in Appendix A. It may be seen that the input is separated into four groups, each group being identified by a particular data code control card. All input cards associated with data code 001 pertain to the structural analysis component. The input data required under data code 002 are those items of information needed to completely define the structural loading. Data code 005 refers to that input information used in the girder section design and review component; and, finally, data code 006 is input information associated with the deck design and review components.

In all, these input components require a total of over 700 individual pieces of input information. However, for a particular type of bridge and for a particular function, such as an analysis or rating, all of this information is not required. Nevertheless, it is extremely cumbersome and time consuming for a bridge engineer to identify precisely the minimum information necessary to adequately define a problem.

In this study the concern was limited to the rating of continuous girder bridges. Although a rating of this particular type of bridge using the BRASS program requires input under each of the four input components, the number of input items is considerably reduced. In fact, the most complete description of any type of continuous girder bridge, for which only a rating is required requires approximately 300 items of input. Much of this information is necessary to define the type of bridge being considered and to provide information that, for the most part, is constant for steel girder bridges.

In this phase of the investigation, the major effort was devoted to identifying the minimum input considered essential by bridge engineers for defining the characteristics of a continuous girder bridge for rating under the BRASS program. The relative simplicity of the new input preparation developed under this project can be better understood by comparing the new input with the input required for rating a continuous girder bridge under the unmodified BRASS system. This latter input is provided in Appendix B, in which over 3 1/2 pages of input, numbering over 300 individual items, are required.

After reviewing and evaluating the input defined by the BRASS program, and after discussions with bridge engineers in Richmond, it was determined that an automated rating of a typical continuous girder bridge that would provide the minimum information needed by the bridge engineer could be accomplished by defining only 81 pieces of input data. A form for the preparation of these data and the identification of the individual items is given in Appendix C.

The development of the preprocessor was based on the simple logic following the input data flow as indicated in the BRASS User's Manual and in the sample problem for a plate girder shown in Appendix B. Each sequential operation in the preprocessor was then defined to either read the data that would form a part of the preprocessor input, or simply define the data that would automatically be prescribed to the BRASS program. A listing of the preprocessor subroutine is shown in Appendix D. A brief description of the logic in the preprocessor will be provided by following through the first two or three data cards which are typical of all those that follow.

Input Definition

The input to the preprocessor consists of data contained on 11 data cards as illustrated by the table in Appendix C. The first input card, which contains the integers 100 in columns 1-3, is a title card in which any alphanumeric information contained in columns 4-80 is simply reproduced by the preprocessor program. The remaining 10 cards contain data required by the BRASS input routine and input as eight pieces of data per card, each contained in a 10-column block. The last data card contains only one block of information. Thus a total of 73 items of input data are to be provided by the engineer.

Referring to the listing of the preprocessor in Appendix D, all the input is read in by one READ statement and is identified in the program as a vector V dimensioned as V(80). This information is then redefined in the preprocessor as a variable vector OP dimensioned as OP(8). The elements of the output vector OP consist of either the input variables V or constants. When each of the eight elements of OP have been defined in the preprocessor, they are output on a file that forms the input file for BRASS. Thus the preprocessor essentially consists of the following operations: (1) read and output title card; (2) read all input data as a vector V; and (3) from the input data and design parameters, which are constants, generate a series of 8-element vectors OP which are, in turn, output to a file that forms the input to BRASS.

2715

The BRASS input requires data cards containing 8 pieces of information. As may be noted by referring to the typical BRASS input format in Appendix B, the first 2 of these define a data code and work code and the remaining 6 blocks define actual parameters for the program. For example, on the sample input for the plate girder bridge shown in Appendix B, the first card has a work code DC, a data code 006, which defines the information that follows to be associated with that deck design component, and then 6 numerical entries. The first entry in columns 6 and 7 are the integers 1 1, which defines the desired output to be a rating. The second entry in column 16 is the integer 8, which defines the problem as a continuous slab over steel girders. Entry 3, the integer 2, defines the steel girders, and entry 4 is the integer 20, which specifies that cantilever spans are not involved. Entry 5 is used only if the deck is timber; and, finally, entry 6 is an impact factor that is usually taken to be 0.3. Since the entries in the first card will be the same for the rating of all continuous girder bridges, these were directly defined in the preprocessor to be fixed values.

The second card, which has a data code of 11 in columns 4 and 5 for the BRASS input, is similar to the first in that most of the entries are also constants for the rating of a continuous girder bridge. The only exceptions are entry 2 and entry 6. In the sample program, entry 2 has a value of 0.75 which is the area of the tensile steel in the positive moment region of the slab. In the preprocessor this entry is the variable OP(4), which is set equal to the input parameter V(1). As may be seen from Appendix C, V(1) is defined as the required area of steel. Entry 6 in the BRASS input sample problem has a value of 1.38. This is essentially the thickness of the concrete cover measured from the bottom of the deck. Since this value may vary, it is designated as a variable V(2) in the preprocessor input. In the preprocessor program, the parameter OP(8) is thus set equal to V(2).

The remainder of the preprocessor is developed in the same manner. Thus by simply reading in 73 pieces of information it is possible, to generate an output file that is used as input to the BRASS program and that contains approximately 300 pieces of information. This reduction in data preparation can be accomplished only because most of the data required by the BRASS program consist of constant values for a particular type of bridge.

It is appropriate, now, to review the restrictions in the scope of this modified BRASS program and preprocessor to define the type of bridge and the characteristics of the bridge that can be handled under this rating program.

Scope of Preprocessor

As noted earlier, the primary objective of this study was to ascertain whether or not an automated capability based on an existing program for bridge rating could be conveniently and efficiently provided for the Bridge Division. The scope was limited to consideration of continuous girder bridges of the type commonly found on a large number of on-system bridges in Virginia. Accordingly, in the development of the preprocessor, which would ultimately assemble data for the BRASS program, it was convenient to incorporate certain limitations on the number and type of parameters that would be accepted by this program. Later, any of these limitations not desired by the Bridge Division could be easily removed and as much generality as desired could be included in the preprocessor.

As suggested by engineers within the Bridge Division, the primary concern for rating continuous girder bridges was the analysis and capacity rating of the girders themselves rather than the slab. Accordingly, the rating of the slab was not included in the program. Only that slab data necessary to enable the BRASS program to operate was included in the preprocessor.

On Input Card No. 3 of the preprocessor input (Appendix C), the number of typical cross sections refers to the cross-sectional configurations within a given span. Based on discussions with bridge engineers and a review of a number of bridge types in use, it was decided to arbitrarily limit this number to three. This would account for the existence of cover plates within a span and should be adequate to handle most of the bridges to be studied. Also on Input Card No. 3, the number of each span is specified. It was decided to limit the number of spans to five. If desired in the future, the number of spans can easily be extended.

Input Card No. 8 contains, in columns 21 through 50, a description of three cross-section types. These refer to the total number of distinct cross-sectional configurations throughout all of the spans. In this study, it was decided to limit the number of cross-section types to three. Again, this limitation can easily be removed with a minimum of program modification. Finally, referring to the last two input data cards, the loading permitted under this modified program is somewhat more limited than that in the original BRASS program. This preprocessor program is limited to two types of loading. One is an HS-20 truck loading specified in terms of total weight on Input Card No. 10 and by axle spacing and wheel loads specified as constants within the preprocessor. The other, the only input item in Input Card 11, is the superimposed dead load, which refers to a uniform load on all spans and may be used in addition to or in lieu of the HS-20 truck loading. These two loadings were felt to be adequate to represent the majority of bridge loadings necessary for rating continuous girder bridges. This input restriction also can easily be removed and loadings can be modified to include up to three truck configurations with varying wheel loads, axle spacings, and uniform loads on different spans.

Demonstration and Documentation

BRASS Sample Problem

Volume 2 of the BRASS User's Manual contains a number of example problems that were run on the original BRASS system including full input.⁽⁴⁾ One of the sample problems, identified as Sample Problem No. 2 in the Manual, used a five-span, welded plate girder bridge similar in detail and configuration to the type of bridge desired to be rated using the program developed in this study. Details of the bridge, including dimensions and cross-sectional properties, may be found in Figure 1. The input necessary for the rating and analysis of this bridge, as previously described, is provided in Appendix B. This same input information, with only a slight modification to account for a single load rather than three trucks in the sample problem, was punched following the format shown in the BRASS Manual. This problem was then run on the IBM computer in Richmond to obtain a rating for this bridge.

The same bridge was rated using the modified BRASS program by preparing input for the preprocessor consistent with the table shown in Appendix C and the corresponding input data shown in Appendix D. This problem was then run using the modified BRASS program in which the simplified input generated an input file subsequently used as input to the regular BRASS program. The input to the BRASS program should have been the same for both example runs. The purpose of this sample application was simply to verify that the preprocessor did, in fact, operate as it should by comparing results from the modified BRASS run with those from the original full-scale run. The outputs from the programs were identical and the information reproduced from the computer sheets are provided in Appendix E.

Figure 1.

Sample Problem: bridge.⁽⁴⁾

five-span, welded plate girder

BRRAT Sample Problem

The original objective of the project, namely the modification of the BRASS program to accept considerably simplified input preparation, was successfully completed and was found to yield results identical to those obtained from the full-scale input. As a point of comparison, and because of the high cost of BRASS noted during this study it was felt appropriate to extend the study to review at least one other program. The BRRAT program developed by the Pennsylvania Department of Transportation was selected.

As described earlier, the BRRAT program is of relatively recent vintage and is not widely used. It appears to have been developed primarily as a research tool. Nevertheless, the apparent simplicity of the program makes it appealing.

It should be noted that the purpose of this limited consideration of BRRAT was simply to provide a point of comparison with the modified BRASS program to see whether or not any further consideration of BRRAT would be warranted. The input required for this program is simpler than that required for BRASS and a comparison can best be made by comparing the inputs for the sample problem run previously. As noted earlier, the input for the full BRASS program is shown in Appendix B and the input for the modified BRASS program (input to the preprocessor) is shown in Appendix C. For comparison, the input for the same sample problem for the BRRAT program is shown in Appendix F. Clearly the input is much simpler, partly because much of the information required for the BRASS program is either assumed or neglected in the BRRAT program. For example, only one modulus of elasticity corresponding to a single grade of steel is permitted in the BRRAT program, whereas composite girders may be handled in the BRASS program.

Nevertheless, it is instructive to compare the outputs from the two programs. The output for the BRRAT program is shown in Appendix G. A comparison of this output with that from the BRASS program indicates clearly that the amount of output from the BRRAT program is considerably less, although it would appear that the basic information is still available; namely, the location of the critical section and the specific values for the inventory rating, operating rating, and safe load capacity.

In comparing the two, it is noted that the inventory rating from the BRASS program identified the critical point as the midpoint of span No. 3 when the inventory rating was 1.13. Correspondingly, from the BRRAT program it is observed that the location of the critical section was identified to be "137.0 feet from the left end of span 3". In the BRRAT rating output it may be seen that the values for the inventory rating, operating rating, and safe load capacity are 1.27, 2.08, and 2.18, respectively. In the BRASS rating output, the inventory rating at mid-span was found to be 1.13, but at the right support the rating was 1.26. The minimum value of the operating rating was 1.76, and no corresponding figure for safe load capacity was given, although, in BRASS the inventory load rating is prescribed to be 40.71 tons.

Although these runs were for the same problem, there are only minor differences in values for the minimum inventory and operating ratings, even though the critical sections were identified to be at different locations in the same span. These relatively small differences in rating values and locations can be ascribed to a number of factors. First, the BRASS rating was obtained for girders whose modulus for the web and flange were different, a capability which was not present in the BRRAT program. Differences also can be ascribed to the fact that the two programs used different techniques for defining the precise load on the girders and for analyzing the bridge. Nevertheless, the very close agreement between the values of the ratings obtained would seem to indicate that either program could be used reasonably effectively. The best check might be to rate a given bridge using both programs and a manual procedure.

Evaluation

The final evaluation of the modified BRASS program, must be made by users of the program in the Bridge Division. Nevertheless, a comparison of the ratings obtained with the original BRASS program, the modified program, and the BRRAT program, indicates that the modified program is successful. While the program developed can provide a BRASS rating with input sufficiently simple to be attractive to potential users, the cost, appears unreasonably high. The BRRAT program is a relatively new program that has seen little field application and its reliability has not been fully evaluated. In spite of this, it does provide easy input and although the output is limited, the key features of the output such as the identification of the critical section and the corresponding values of inventory and operating rating were found to be close to those obtained from the BRASS program. A far more important consideration in judging which program to use, however, is cost.

The costs of running BRASS and BRRAT for the same sample problem were compared and the cost differences were found to be dramatic. The average cost for a BRASS run was in excess of \$450 for the rating of a 5-span, continuous girder bridge. The cost of a rating of the same bridge, admittedly in a more limited context, using the BRRAT program was less than \$11. Based only on this information, it would seem worthwhile for bridge engineers to at least pursue additional comparisons of BRASS and BRRAT. Unless the BRASS program can be made more economical to run, even the provision for simplified input would not make it attractive for use compared to the less costly BRRAT program. In this regard, it has recently been learned that a new release of BRASS is now available and this may prove to be more economical than the old one.

RECOMMENDATIONS

It is recommended that the BRRAT program be given consideration as at least a candidate for checking bridge ratings as currently conducted by the Bridge Division.

It is also recommended that a rating of a continuous girder bridge structure be determined manually and the results compared with the output obtained from the BRRAT and the modified BRASS programs.

Consideration should also be given to obtaining bridge ratings with the BRASS program recently made available to determine their costs.

٠,

2722

...

ħ

REFERENCES

- Fu, C. C., and D. R. Schelling, "Methods and Software for the Rating of Bridge Structures", ASCE Spring Convention and Exhibit, Pittsburgh, Pennsylvania, April 24-28, 1978.
- Lathia, H. M., "Bridge Analysis and Rating System", ASCE Spring Convention and Exhibit, Pittsburgh, Pennsylvania, April 24-28, 1978.
- Johnston, R. R., H. D. Robert, and D. A. Glandt, "Bridge Rating and Analysis Structural System (BRASS), Vol. 1, System Reference Manual", <u>Report No. FHWA-RD-73-501</u>, Federal Highway Administration, Washington, D. C., September 1973.
- 4. "Bridge Rating and Analysis Structural System (BRASS), Vol. 2, Example Problems", <u>Report No. FHWA-RD-73-502</u>, Federal Highway Administration, Washington, D. C., September 1973.

2724

..

+

APPENDIX A

. .

: '

. 2725

Components of the BRASS Program

L L
e A
abl
E

Structural analysis component. Input data sheets necessary for a problem analysis by BRASS(4)

	Web depth #5 Web case #5 only	Inches D ₅	Web range #4 Web case #5 only	Web depth #4 Web case #5 only Inches D4	Web range #3 Web case #5 only Feet	Web depth at right end of left haunch or left end of right haunch Inches D ₃	Web depth at right end Inches D2	A SPAN CARD NUMBER 2 Must follow a 101 card) (See Figure 44)
	Web depth at left end	Inches D ₁	Typical Web Case 10.=Const. Mom. of Iner. 10.=Uniform Varying 2.=Uniform Haunch 3.=Parabolic Haunch 5.=Immediate Break	Web Range #2 Feet	When Case No. (Entry 5) is: 0., Enter Moment of Inertia (In. ⁴); 1,2,3, or 5, Enter Web Range No. 1 (ft.); 4, Leave Blank.	Length of this span Feet	Designated number of this span (corresponds to basic structure type chosen, Entry 4 on Con- trol Card)	
	Point Number		Point Number	Point Number	Point Number	Point Number	Point Number 205. = Span #2 at 5/10 point	DESIGN POINTS CARD Max.No. = 11 points per span. If not entered, all points will be anal- yzed.
	· T T T T	1111	111111111	******	111111111	******	****	0.0.1
			If sustained DL to be applied to composite sec- tion, enter value of n for sustained dead load Use in LL run only	Basic Structure Type 0=Cell type 9=7-19 Span Cont. 10=Slant Leg (5 span) 11=Slant Leg (5 span)	Number of typical cross section in this struc- ture. Do not include circular.	Number of members in this structure.	Influence Lines? Equations of Indet.? Beam Characteristic? Beam Properties? Shear Infl. Lin.?	
¥								
8	9 2	ENTRY	ENTRY 5	ENTRY 4	ENTRY 3	EITRY 2	EALBY 1	ATAS 2688

A-2

•

_		· · · · · · · · · · · · · · · · · · ·						
	Cross Section Code for Range #12 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #12 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Code for Range #11 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #11 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Code for Range #10 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #10 (distance from left end to where Entry #2 cross section is typical) Feet	SPAN CARD NUMBER 6 (Must follow a 105 card)	1
L							<u>1'0'7</u>	<u> </u>
	Cross Section Code for Range #9 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #9 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Code for Range #8 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #8 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Code for Range #7 (from 1 to 10 for typical sections Equal to '11' for Circular sections)	Cross Section Range #7 (distance from left end to where Entry #2 cross section is typical) Feet	SPAN CARD NUMBER 5 (Must follow a 104 card)	
		*******	TITTT	1111111111	****	*******	5'0'I	
	Cross Section Code for Range #6 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #6 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Code for Range #5 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #5 (distance from left end to where Entry #4 corss section is typical) Feet	Cross Section Code for Range #4 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #4 (distance from left end to where Entry #2 cross section is typical) Feet	SPAN CARD NUMBER 4 (Must follow a 103 card)	
L					******		1'0'T	
	Cross Section Code for Range #3 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #3 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Code for Range #2 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #2 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Code for Range #1 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #1 (distance from left end to where Entry #2 cross section is typical) Feet	SPAN CARD NAMBER 3 (Must follow a 102 card)	
Ţ	····	*******	****	******	******		1'0'2	
3	8 YATHE	ENTRY 5	HATRY 4	ENTRY 3	EITTRY 2	EMLEK J	4 7 85	3 E 87
_				the second s				_

٦

3

ŝ

•

A-3

Date Cross Section Code for for typical sections. Angle #6 Cross Section Kange #15 Cross Section Range #18 From 1 to 10 Circular Sections. Ear typical sections. Ear typical sections. Circular Section Range #15 Cross Section Range #18 Angle #6 Circular Sections. Ear typical sections. Ear typical sections. Circular Section Range #15 Cross Section Range #18 Angle a4 or p55 Circular Section Supplead Cross Section Range #18 Angle a4 or p55 Circular Sections. East typical Cross Section Range #18 Angle a3 or p4 Section is typical Cost Section Range #17 Angle a3 or p4 East typical Section is typical Cross Section Range #14 Cross Section Range #17 Angle a3 or p4 East to 11. Cost Section Range #14 Cross Section Range #17 Angle a3 or p4 East to 11. Cost typical sections. East typical East typical East to 11. Cost typical sections. East typical East typical East to 11. Cross Section Range #14 Cross Section Range #17 Angle a3 or p3 East to 11. Cross Section Range #14 Cross Section R							Angle 87	ANGLE OF LEG
Date Date Angle B6 Gross Section Code for Europsial sections. Fange NB (from 1 to 10 for typical sections) Angle B6 Gross Section Lar Sections. Fange NB (from 1 to 10 for typical sections) Range NB (from 1 to 10 for typical sections) Angle B6 Gross Section left end figual to '11' for for typical sections. Cross Section Range NB (distance from left end (distance from is typical) Angle ad or B5 Gross Section is typical) Feet trypical sections. Feet trypical sections. Angle ad or B5 Feet trypical sections. Feet trypical sections. Angle ad or B5 Gross Section left end (distance from is typical) Cross Section Range NB Angle ad or B5 Feet trypical sections. Feet trypical sections. Angle ad or B5 Gross Section Marker Barty Af cross Section is typical) Feet trypical sections. Feet trypical sections. Equal to '11' for for typical sections. Angle ad or B2 Gross Section Range NB Cross Section Range ND Angle ad or B2 Gross Section Range ND Cross Section Section Sections. Equal to '11' for for typical sections. Equal to '11' for Gross Section Range ND Cross Section Range ND Angle ad or B2 Gross Section Range ND Cross Section Range ND Angle ad or B2 Feet try A cross Equal to '11' for for typical sections. Equal to '	L		11111111					0'1'1
Date Cross Section Code for for typical sections. Cross Section for for typical sections. Ending #15 (from 1 to 10 for typical sections. From 1 to 10 for typical sections. From 1 to 10 for typical sections. Equal to '11' for Cross Section Range #15 Cross Section Left end distance from left end to where Entry #6 cross section is typical) Cross Section Range #18 for typical sections. Equal to '11' for Cross Section Code for Range #14 (from 1 to 10 for typical sections. Cross Section Code for Feet Cross Section Code for for typical sections. Equal to '11' for for typical sections. Cross Section Code for for typical sections. Cross Section Code for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Cross Section Range #17 for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Endial to '11' for for typical sections. Equal to '11' for for typical sections. <t< td=""><th></th><td>Angle B6</td><td>Angle a4 or β5</td><td>Angle a3 or β4</td><td>Angle a2 or \$3</td><td>Angle al or 82</td><td>Angle &I</td><td>ANGLE OF LECS (See Figures 41 and 42) Degrees and decimals of degrees</td></t<>		Angle B6	Angle a4 or β5	Angle a3 or β4	Angle a2 or \$3	Angle al or 82	Angle &I	ANGLE OF LECS (See Figures 41 and 42) Degrees and decimals of degrees
Dist Cross Section Code for Range #15 (from 1 to 10 for typical sections. Equal to '11' for for typical sections. Equal to '11' for for typical sections. Equal to '11' for Cross Section Range #15 (distance from left end distance from left end distance from left end to where Entry #6 cross section is typical) Excess Section Range #15 (distance from left end distance from left end to where Entry #6 cross section is typical) Excess Section Range #15 (distance from left end to where Entry #6 cross section is typical) Excess Section Range #14 (distance from left end to where Entry #6 cross sections) Excess Section Range #14 (distance from left end for typical sections.) Excess Section Range #14 (distance from left end to where Entry #4 cross section is typical) Excess Section Range #14 (distance from left end to where Entry #4 cross section is typical) Excess Section Range #14 (distance from left end to where Entry #4 cross section is typical) Excess Section Range #14 (distance from left end to where Entry #4 cross section is typical) Excess Section Range #13 (distance from left end to where Entry #2 cross section is typical) Excess Section Range #13 (distance from left end to where Entry #2 cross section is typical) Excess Section Is typical) Excess Section Range #13 (distance from left end to where Entry #2 cross section is typical) Excess Section Range #13 (distance from left end to where Entry #2 cross section is typical) Excess Section Range #13 (distance from left end to where Entry #2 cross section is typical) <t< th=""><th></th><th></th><th>111111111</th><th></th><th>1111111111</th><th>******</th><th></th><th>6'0'T</th></t<>			111111111		1111111111	******		6'0'T
Cross Section Code for for typical sections. Equal to '11' for for typical sections. Equal to '11' for Circular Section Range #15 Cross Section Range #15 Cross Section Range #15 Cross Section is typical) Feet Freet Freet <th></th> <th>Cross Section for Range #18 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)</th> <th>Cross Section Range #18 (distance from left end to where Entry #6 cross section is typical) Feet</th> <th>Cross Section Code for Range #17 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)</th> <th>Cross Section Range #17 (distance from left end to where Entry #4 cross section is typical) Feet</th> <th>Cross Section Code for Range #16 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)</th> <th>Cross Section Range #16 (distance from left end to where Entry #2 cross section is typical) Feet</th> <th>SPAN CARD NUMBER 8 (Must follow a 107 card)</th>		Cross Section for Range #18 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #18 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Code for Range #17 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #17 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Code for Range #16 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #16 (distance from left end to where Entry #2 cross section is typical) Feet	SPAN CARD NUMBER 8 (Must follow a 107 card)
Cross Section Code for for typical sections. Equal to '11' for for typical sections. Equal to '11' for Circular Section Range #15 (distance from left end to where Entry #6 cross section is typical) Feet Freet Freet Freet From 1 to 10 Freet Freet Freet Freet From 1 to 10 Freet Freet Freet Freet Front typical sections. Freet Freet From 1 to 10 for typical sections. Freet	П						1111111	8'0'I
RDE RODE FALHE T SILLAR 5 FALLER # FALLER 0 2		Cross Section Code for Range #15 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #15 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Code for Range #14 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #14 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Code for Range #13 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Range #13 (distance from left end to where Entry #2 cross section is typical) Feet	SPAN CARD NUMBER 7 (Must follow a 106 card)
	ă	G IHING	S IHINT	FALKA #	ENTRY 3	ELLER 5	FALKS T	3002 3005

Latio of modulus - Area steel in composite	increte (n). Enter a	istance from top of Distance from AS ₁ to top teel flange to bottom for top flange (D ₆) of top flange (D ₆) over plate (D ₄) Inches	oncrete Flange Area steel in composite hickness or Cover I slah (AS ₁) late (T ₃) Inches Inches ²	ffective concrete flange Distance between bottom idth for composite flange and bottom cover irder or width of plate (D ₅) over plate (B ₄) Inches	idth of Bottom Right – Width of Bottom Cover illet (Fg) – Plate (B5) Inches – Inches	eight of Bottom Right Thickness of Bottom illet (F7) Cover Plate (T4) Inches Inches	ROSS SECTION DIMENSIONS CROSS SECTION DIMENSIONS
concr 1. if are f		Dista steel of co cover	Concr Thick Plate	Effec width girde cover	Width Fille	Heigh Fille	CROSS CARD 1 Must
		• • • • • • • • • • • • • • • • • • • •	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	5'1'1
Fillet (F ₆)	Inches	Height of Bottom Left Fillet (F ₅) Inches	Width of Top Right Fillet (F4) Inches	Height of Top Right Fillet (F3) Inches	Width of Top Left Fillet (F2) Inches	Height of Top Left Fillet (F ₁) Inches	CROSS SECTION DIMENSIONS CARD NUMBER 2 (Must follow a 111 card)
							Ζ'Τ'Τ
Bottom Flange Thickness (T2)	Inches	Top Flange Thickness (T ₁) Inches	Top Flange Width (B ₃) Inches	Bottom Flange Width (B ₂) Inches	Web Thickness (B ₁) Inches	Cross Section Code (For cross section to be defined by these dimensions) (1 thru 10)	CROSS SECTION DIMENSIONS CARD NUMBER 1 See Figure 45
		11111111	****		******	****	I'I'I
9	ENTRY	ENTRY 5	FALEX #	ENTRY 3	ENTRY 2	ENTRY 1	ATAS 3

A**-**5

F	Moment of Inertia at 17/20 of span	Inches ⁴	Moment of Inertia at 16/20 of span	Inches ⁴	Moment of Inertia at 15/20 of span	Inches ⁴	Moment of Inertia at 14/20 of span	Inches ⁴	Moment of Inertia at 13/20 of span	Inches ⁴	Moment of Inertia at 12/20 of span	Inches ⁴	- MOMENTS OF INERTIA CARD MUMBER 3	(Must follow a 122 card)
	Moment of Inertia at 11/20 of span	Inches ⁴	Moment of Inertia at 10/20 of span	Inches ⁴	Moment of Inertia at 9/20 of span	Inches ⁴	Moment of Inertia at 8/20 of span	Inches ⁴	Moment of Inertia at 7/20 of span	Inches ⁴	Moment of Inertia at 6/20 of span	Inches ⁴	MOMENTS OF INERTIA	(Must tollow a 121 card)
	Moment of Inertia at 5/20 of span	Inchest	Moment of Inertia at 4/20 of span	Inches ⁴	Moment of Inertia at 3/20 of span	Inches ⁴	Moment of Inertia at 2/20 of span	Inches ⁴	Moment of Inertia at 1/20 of span	Inches ⁴	Moment of Inertia at left support	Inches ⁴	MOMENTS OF INERTIA	
											Distance from AS_2 to top of top flange (D7)	Inches	CROSS SECTION DIMENSIONS	See Figure 45
х З	9	ENTRY	3 کا	ENE	η Χι	ENTE	£ X	EMTR	2 7	ETIE	τ.	ENTRY	I'I'2 SQPF	36 83

ſ	X-Bar at 17/20 span	Inches	X-Bar at 16/20 span	Inches	X-Bar at 15/20 span	Inches	X-Bar at 14/20 span	Inches	X-Bar at 13/20 span	Inches	X-Bar at 12/20 span	Inches	DISTANCE TO CENTROID CARD NUMBER 3 (X-BMR)	(Must follow a 132 card)
L					+						·		2.5.1	
	X-Bar [°] at 11/20 span	Inches	X-Bar at 10/20 span	Inches	X-Bar at 9/20 span	Inches	X-Bar at 8/20 span	Inches	X-Bar at 7/20 span	Inches	X-Bar at 6/20 span	Inches	DISTANCE TO CENTROID CARD NUMBER 2 (X-BAR)	DIED TOT & MOTION JOHN
Ľ				11111	111	11111	111		111	11111			ז' צ' ז	1
	X-Bar at 5/20 span	Inches	X-Bar at 4/20 span	Inches	X-Bar at 3/20 span	Inches	X-Bar at 2/20 span	Inches	X-Bar at 1/20 span	Inches	X-Bar at left support	Inches	DISTANCE TO CENTROID CARD NUMBER 1 (X-BAR) See Figure 45	0
L													τ'ε'τ	
			1.1.1.	· • • • • • • • •		J • Y	Moment of Inertia at right support	Inches ⁴	Moment of Inertia at 19/20 of span	Inches ⁴	Moment of Inertia at 18/20 of span	Inches ⁴	A MOMENTS OF INERTIA CARD NUMBER 4 (Must follow a 123 card)	
HE	0	ANT N'S		- 1317 HT		I M T MTI	 م	TATUT					1 5 V	7000
Ľ	,		··· ···	9 ACG [15	Ţ	VCTPAG	ک 	VUTRY	5	ELLEN	I	ENTRY		XB3K

2731

A**-**7

Table A-1 cont.

	••••	 	 	+++++++++++++++++++++++++++++++++++++++		L	 <u>.</u>
	·····					Span with fixed joint a left end	JOINT FIXITY CARD NIMBER 2
Ц	¥	++	++	4	ਦ	ਦ ਦ	2.0,4
	Span with fixed joint a left end	Span with fixed joint a left end	Span with fixed joint a left end	JOINT FIXITY CARD NUMBER 1			
	****	****	****	****		*******	I'0'7
				X-Bar at right support Inches	X-Bar at 19/20 span Inches	X-Bar at 18/20 span Inches	DISTANCE TO CENTROID CARD NUMBER 4 (X-BAR) (Must follow a 133 card)
×.							
3	8 YATH2	EMLER 5	H ABINA	ENTRY 3	EITRY 2	EALSA J	ATAG AEON

,

A-8

Table A-2 Structural Loading Component

R R				
9	Total weight truck #3	• • •	Last span with uniform 1 load of Fntrv #4	Augnitude of point
ENTRY	Tons			Kips
5 8	Total weight truck #2		First span with uniform load of Entry #4.	Distance from left support to point of annlication
ENTR	Tons	1 1 1 1		Feet
τ λ	Total weight truck #1		Uniform load on the following spans.	Span number this load will be on.
FATR	Tons		Kips/Ft.	
٤ ۲۱	Percent of impact (above 1.) to be used.	Modulus of elasticity of girder material.	Last span with uniform load of Entry #1.	Magnitude of point
ENTE		Kips/Sq. In.	* * * *	Kips
T3Y 2	Wheel fraction	Unit weight of the girder material,	First span with uniform load of Entry #1.	Distance from left support to point of application
213		Kips/Cu. Ft.		Feet
T YAT	Deflections wanted Dead load Live load Max. Design values	Uniform load on all spans (This loading may be modified by 202 Card).	Uhiform load on the following spans.	Span number this load will be on.
NA		Kips/Ft.	Kips/Ft	
AT65	CONTROL CARD	GENERAL DATA	 NIFORM LOAD CARD ■ (Modifies 201 Card) 	POINT LOAD CARD
3€ 88	2.4		Entry #1).	Loads (36 cards).

A**-**9

-			· · · · · · · · · · · · · · · · · · ·								_			
							Modulus of elasticity of girder material.	Kips/Sq. In.	Length of span	Feet	Length of span number one	(Reference span)	SPAN DATA FOR DEFLECTION (Card Input) Entry #1 of 002 card must equal	100000.
L					1111								10'7	
-							Concentrated load for shear	Kips	Concentrated load for moment	Kips	Uhiform lane load	Kips/Ft.	LANE LOAD CARD	
L											ļ		<u>3'0'2</u>	
	Truck wheel load #6	Kips	Spacing between truck wheels #5 and #6.	Feet	Truck wheel load #5	Kips	Spacing between truck wheels #4 and #5	Feet	Truck wheel load #4	Kips	Spacing between truck wheels #3 and #4. (When	HS loading is indicated, enter maximum spacing between wheels #2 & #3) Feet	TRUCK LOAD DATA (continued) Required for HS loading	or more than 3 overload wheels. (See P96 f.)
	****	11111	*****	TT.	***	*****	1117	1111		111111	111	1 1 1 1 1 1	202	
	Truck wheel load #3	Kips	Spacing between truck wheels #2 and #3. (When HS loading is indicated, enter minimum spacing).	Feet	Truck wheel load #2	Xips	Spacing between truck wheels #1 and #2	Feet	Truck wheel load #1	Kips	Direction Code	2=Down.M.P. 3=Up and down M.P. [adding Type [2=Special Load	TRUCK LOAD DATA	
¥				11			+						<u>Σ.0.Σ</u>	
8	9	ENTRY	5 X8	ENI	4	ENTRY	٤	ENTRY	2	ENTRY	1	ENTRY 1	BATA	RBBE

	Moment of inertia at 11/20 moint	Inches ⁴	Mcment of inertia at 10/20 point	Inches ⁴	Moment of inertia at 9/20 point	Inches ⁴	Moment of inertia at 8/20 point	Inches ⁴	Moment of inertia at 7/20 point	Inches ⁴	Moment of inertia at 6/20 point	Inches ⁴	MOMENTS OF INERTIA	(continued)
L	ļ				+				+	1111		****	S' 0	' Þ
	Moment of inertia at 5/20 point	Inches ⁴	Moment of inertia at 4/20 point	Inches ⁴	Moment of inertia at 3/20 point	Inches ⁴	Moment of inertia at 2/20 point	Inches ⁴	Moment of inertia at 1/20 point	Inches ⁴	Moment of inertia at left support	Inches ⁴	MOMENTS OF INERTIA	for Deflections (Card Input)
	****	11111	1111	1111	11111	1111	11111	1111	TITT		1111	*****	t 0	7
			Moment at right support	Kip-Feet	Moment at 9/10 point	Kip-Feet	Moment at 8/10 point	Kip-Feet	Moment at 7/10 point	Kip-Feet	Moment at 6/10 point	Kip-Feet	REAL LOAD MOMENTS	(continued)
Ч											14.01		5'0'	7
	Moment at 5/10 point	Kip-Feet	Moment at 4/10 point	Kip-Feet	Moment at 3/10 point	Kip-Feet	Moment at 2/10 point	Kip-Feet	Moment at 1/10 point	Kip-Feet	Moment at left support	Kip-Feet	REAL LOAD MOMENTS	for Deflections (Card Input)
F	1111	1 1 1 1 1	1117		*****	1111	11111		11111	1 1 1 1	****		Z' 0'	7
3	9	ENTRY	Ş	FNTRY	ήX	ENTR	کر ک	ENTR	5 1	ENTR	τι	RATR	AT 8	<u>3€</u> 82€

A-11

1 S					
9	Moment of inertia at 17/20 point		****	Coefficient at 5/10 point	
ENTRY	Inches ⁴	****	+ + 1 + 1 + 1 + 1		, ,
S	Moment of inertia at 16/20 point	****	1111	Coefficient at 4/10 point	Coefficient at right support
ENTRY	Inches ⁴				
η	Moment of inertia at 15/20 point		1117	Coefficient at 3/10 point	Coefficient at 9/10
ENTRY	Inches ⁴		1111		
٤	Moment of inertia at 14/20 point	Moment of inertia at right support	7777	Coefficient at 2/10 point	Coefficient at 8/10 point
FUTRY	Inches ⁴	Inches ⁴	* * * * * *		*****
5	Moment of inertia at 13/20 point	Moment of inertia at 19/20 point	1111	Coefficient at 1/10 point	Coefficient at 7/10 point
ENTRY	Inches ⁴	Inches ⁴	11111		
τ	Moment of inertia at 12/20 point	Moment of inertia at 18/20 point	++++	Coefficient at left support	Coefficient at 6/10 point
FULK	Inches ⁴	Inches ⁴	****		
4465	C MOMENTS OF INERTIA	A MOMENTS OF INERTIA	8,0,4	LEFT SUPPORT MOMENT 6 INFLUENCE LINE 6	LEFT SUPPORT MOMENT
RBBE	(continued)	(continued)		for Deflections (Card Input)	(continued)

•

Table A-2 cont.

A-12

			• • • • • • • • • • •					
		Coefficient at right ====================================	Coefficient at 9/10	Coefficient at 8/10 ====================================	Coefficient at 7/10	Coefficient at 6/10 2 point	RIGHT SUPPORT MOMENT	(continued)
L							1,1,4	
	Coefficient at 5/1(Coefficient at 4/10 point	Coefficient at 3/10 point	Coefficient at 2/10 point	Coefficient at 1/10 point	Coefficient at left support	RIGHT SUPPORT MOMENT INFLUENCE LINE	<pre>for Deflections (Card Input)</pre>
Ŕ	9 THING	C INTHE					4'I'0	7000
<u>ല</u>			A LEGMING	z Aculus	TRITER 2	T ANDAT	ATAG	MO3K

A-13

Table A-3

Girder Section Design and Review Component

	Type Code	Section Number	Type Code	Section Number	Type Code 1=Steel(welded,rolled or Tiveted) 3=Concrete, reinforced 5=Composite,steelfconcrete 7=Timber	Section Number	SECTION TYPES (Sections as numbered in Structural Analysis) define all sections							
Ч			Ira		du	Bu								
		Allowable stress over design stress - timber	Allowable stress over yield stress - structu steel	Allowable stress over ultimate stress - concrete	Allowable stress over yield stress-reinforci steel (columns	Allowable stress over yield stress-reinforci steel (beams)	MATERIALS FACTORS (Operating Rating)							
	*****	***		111111111	****	****	2'0'5							
		Allowable stress over design stress - timber	Allowable stress over yield stress - structura steel	Allowable stress over ultimate stress - concrete	Allowable stress over yield stress-reinforcing steel (columns)	Allowable stress over yield stress-reinforcing steel (beams)	MATERIALS FACTORS (Design, Review or Inventory Rating)							
L							T O'S							
				Composite dead load run 0=No, 1=Yes, 2=Composite live load rur	Run Control 0=Design-Review 1=Rating	Report Request Rating Report Design Report	CONTROL CARD							
¥			• I I I I I I I I I I		, , , , , , , , , , , , , , , , , , , ,	11	<u>3.0.0.7.0</u>							
3	ENTRY 6	S YATKE	HALEX H	ENTRY 3	ERTRY 2	ELLER J	K83K BATA							
		 • • • • • • • • •		****		*****		••••	- Moment of Inertia	about yy axis Inches ⁴	Point Number		MI PROPERTIES	s
---	--------------	-----------------------	--------------------	----------	--------------	---------	--------------	----------	------------------------	--------------------------------------	--------------	-------------	---	------------------
										Kips	Shear-zy	Kips	ADD ACTIONS (Continued)	
	Moment-yy	Kip/Feet	Moment-xx (Torque)	Kip/Feet	Axial	Kips	Moment-22	Kip/Feet	- Shear-yz	Kips	Point Number		ADD ACTIONS Max. No. cards = 18 Sas Firmor 70	0/ 2409 9/
	Point Number		Point Number	-	Point Number		Point Number		Point Number		Point Number		DESIGN POINTS Max. No. = 18 Points	<u>'I</u>
3	9) YATN2		ENTRY !	+	7 XHTNA	Ę	ENTRY		EX81.2	т. Т	EMLKA	BATA BATA	3£ 8;

A-15

З З	T	Ľ			
9	Modulus of elasticity ratio - steel to conc	ete	Unsupported length of sompression flange	NOTE: Each group of 530 t in sequence.	htu 533 data cards must be
ENTRY	(i)		Feet	If 531, 532 and/or 533 car define a given point numbe a continue statement, numb	ds are required to further r-(Entry #1 of the 530 card) en "1" is required in the
ENTRY 5	Yield stress of top flange (if same as we stress, do not enter) Lbs./Sq. In.		Are there longitudinal stiffeners? 1 = Yes 0 = No	"CONT" column of all but t It is not necessary, howev thru 533 cards be required	he last card in the sequence er, that each of the 531 in each group.
4 ANTRY 4	Yield stress of botto flange (if same as we stress, do not enter) Lbs./Sq. In.		Bearing stiffener width Inches	Data cards 550 thru 554 mu manner.	st be coded in a like
e yhthe	Yield stress of web Lbs./Sq. In.		Bearing stiffener thick- ness Inches		f ^t (Composite LL run only Lbs./Sq. In.
ENTRY 2	Type Section 2=Rolled Section or Welded Plate 3=Riveted 4=Composite, Pos. M	É	Transverse stiffener spacing Inches	Radius of fillet	Allowable shear at lower cover plate Lbs./In.
ENLER J	Point Number		Angle of web from verti- cal Degrees and decimals of degrees	Type of Section 1=Open 2=Closed	Allowable shear at compo- site or upper cover plate Lbs./In.
Ados Ados	STEEL SECTION DETAILS		A STEEL SECTION DETAILS - MEB AND STIFFENERS (Continued)	N STEEL SECTION DETAILS - TORSION (Continued)	의 COMPOSITE AND COVER PLATE 의 SHEARS

in the second se	Ţ		ſŢ	-
9	Modulus of elasticity ratio-steel to concrete	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Distance to centroid of AS3 (D3)	- Spacing of stirrups, ties or spiral reinforcement
19111	Ê		Inches	Inches
S ANDER	Percent of concrete to be used in shear normal to the member	,,,,,,,,,,	Area of steel (AS3)	Area steel stirrups or ties, or spiral reinforcement
4	timata etvace of			чи • ж
ት ያዩ	concrete	·•••••••••••••••••••••••••••••••••••••	AS2 (D2) AS2 (D2)	ASS (D5) ASS (D5)
LN4	lbs./Sq. In.		Inches	Inches
<i>ई उ</i> हा	Yield stress of reinforcing steel for stirrups, ties, etc.	1111 1 1	Area of steel (AS2)	Area of steel (ASS)
2015	lbs./Sq. In.	***	Sq. In.	Sq. In.
2 X	Yield stress of main reinforcing steel	Distance to centroid of steel in top of section	Distance to centroid of ASI (D1)	Distance to centroid of AS4 (D4)
atura -	lbs./Sq. In.	Inches	Inches	Inches
τ , λ.Υ.:	Point Number	Distance to centroid of steel in bottom of section	Area of steel (ASI)	Area of steel (AS4)
		Inches	sq. In.	Sq. In.
892£	DETAILS FOR REINFORCED CONCRETE SECTIONS (Design and Review)	L DETAILS FOR REINFORCED CONCRETE SECTIONS	CONCRETE SECTIONS	DETAILS FOR REINFORCED
32 82		(Design run only)	(Review and Rating) See Figures 72-75, p 126	(Continued) (Review and Rating)

2741

Research A

Г	•••••		*****	+++++++++++++++++++++++++++++++++++++++		*****	
				Width of bearing area Inches	Distance from end of mem- ber to beginning of bear- ing area Inches	Length of bearing area Inches	TIMBER BEARING DATA
L							L' 6'S
			Design stress of timber in compression perpen- dicular to grain Lbs./Sq. In.	Design stress of timber in horizontal shear Lbs./Sq. In.	Design stress of timber in flexure Lbs./Sq. In.	Point Number	TIMBER DESIGN
П	****						0'6'5
		Type of shear reinforce- ment 1 = Tie 2 = Spiral	Distance to centroid of ASR (CLR) Inches	Area of steel in right end of column (ASR) Sq. In.	Distance to centroid of ASL (CLL) Inches	Area of steel in left end of section (ASL) Sq. In.	DETAILS FOR REINFORCED CONCRETE SECTIONS (Continued) (Column Review)
X		· · · · · · · · · · · · · · · · · · ·	L TUTIET	C TVT177	פייזצו כ	TINTAT	
15	A YATWA	2 VATING	7 AGUNA	צ אמשווים	C VOITER		NOSK DATA

A-18

2742

Table A-4 Deck Design and Review Components

* These entries apply only to concrete decks.

2743

A-19

concentrated load, P2] of taper or fillet (D12 Feet Feet
Feet
idth of miscellaneous Curb width (D11) niform load (d5) _
Feet
stance from outside of Curb height (D10)
scellaneous uniform
Feet
ance from outside of _ Depth of deck without to first concen tapers (D9)
Feet Discrete Transformer Feet Discrete Feet Feet Feet Figure Feet Figure Fi
Ser or
illet] vertical leg of fillet] on cantilever (D8)
Don cantitever (1)6)
Inches Depth of deck without tapers (D9) Inches Depth of taper or vertical leg of fillet on cantilever (D8)
1 1

2744

A-20

	111
	1111
	1111
econ	
	· · · · · · · ·
irst	- Tri
sual	י <u>כ</u> י
	111
Weigh	

Weight surfac	/er
	тт Ч
CANTI	0'2
(LUIILL	0

ŝ						
9	Width of stringer or supporting member	1111	1=Plank floor 2=Laminated floor	1111	Width of tire, truck #3	
TRTN2	Inches	1.1.1.1	J=Splined or doweled floor	11111	Inches	
<u>ن</u> ک	Weight of wearing		Enter 1. if decking is continuous over more than two spans		Length of tire, truck #3	
elne	Lbs./Sq. Ft.	677			Inches	
4 783	Weight of timber decking		Allowable horizontal shear stress for decking (Inventory Rating)	111111	Width of tire, truck #2	
LNT	Lbs./Cu. Ft.	117	Lbs./Sq. In.	TTT.	Inches	
٤ ٢٤	Depth of flooring member (planks)		Allowable bending stress in decking (Inventory Rating)	111111	Length of tire	
INI	Inches		lbs./Sq. In.	111	Inches	
81 5	Width of flooring member (planks)		Allowable horizontal shear stress for decking (Operating Rating)	11111	Width of tire, truck #1 [See AASHO 1.3.4(a))	
r:13	Inches	F F F	lbs./Sq. In.	111	Inches	
к т	Stringer spacing	11111	Allowable bending stress in decking (Operating Rating)	11111	Length of tire, truck #1, if other than allowed by AASH0	
TWI	Feet		Lbs./Sq. In.	ITTT.	Inches	
BATA	2. TIMBER DECK DATA 0.	0 5'2	TIMBER DECK DATA (continued)	0 2 4	TIMBER DECK LOADING CARD	
36 88						

۱

A-22

2746

APPENDIX B

.

••

Input Needed for a Continuous Girder Bridge Sample Problem Under the Unmodified BRASS System

FORM Rev. 3	I C - 16 3/11/69		WYOM	NG STATE HIGHWAN CHEYENNE WY BRIDGE DIVISI	Y DEPARTMENT Oming Ion	SHEET NO	1 OF 4
//EX	(EC BF	RSYSØØ				CHECKED	
•				DESIGN SYST	EM 65 Emp	loyee Dept. P ov Jab W. Code 75 (Work Str. : Code No. BO
	MENT	CARD			ř	144、125、11、145、155	<u>16.7 . 164</u>
5'0'1	SAM	PLE, PROBLEM	NO. Z WELL	259 , P4 , G1, RG	YER BRIDGE		
~ _	3						99
000i ≩0œ	0001 041-1	ENTRY I	ENTRY 2	ENTRY 3	ENTRY 4	ENTRY 5	ENTRY 6 C
х Л	A A	6 15	25	35	45	55	65 7
20	900	11.1.1.1.1.1/1	8	2	2 ¢ .		m.
-	1		.75	.88.			1.38
	1,2	3250.	60000.	.55	.55	2.	4
-	£'/	9.25	/4	75	/6	0	0
-	4		150		1.88		
ğ	100	Ø1110.	5	<u>چ.</u>			
-	007	104	200.	205.	300.	305.	400
-	1,0,0	500.					
-	$\dot{\phi}'$	1	110	110.		/	87.
-	201	87					
-	105	87.5	//	87.5	2.	1.1.0	2
-	$\dot{\theta}$	6	/.37	/37		//	87.
-	1,02	87					
_	/03	26.5	2	26.5		1.10.5	//
-	104	1,1,0.5	2	/.37	2.		
-	$\dot{\theta}$	€	/37.11111	1.37.11111	-		87
	102	87					
HAIL	EN CA	ואט					
-	~						

NOTE: A trailer card must follow the last structure card containing data

۰.,

•

B-2

2742

FOR	M C - I(3/11/69	9	MYOM	ING STATE HIGHWA	NY DEPARTMENT		(
				CHEYENNE W	YOMING	SHEET NO	C OF 4
1/E	XEC B	RSYSØØ				CHECKED	DATE 2-6/-/2
1 CO	MMENT	CARD		DESIGN SYS	TEM 65 Emp	Ioyee Depi. P ov Jab	lork Str. BO
				• • • • • • • • • • •			
~[5 10 10						23
000u 30ϴ	00 000 0 4 - 4	ENTRY I	ENTRY 2	ENTRY 3	ENTRY 4	ENTRY 5	ENTRY 6 0
Ι			25	ě	5 45	55	65 7
-	6)	26.5	2	26.5	//	110.5	//
-	001	11.0.5	2	1,37	2.		
-	6	4	/37	/37			87.
-	201	87					
-	103	26.5	5.111111.5	26.5	//	1,10.5	//
-	0 4	11.0.5	2	/37	2.		
-) O	5	11/10.11	11111.01/1		/	87.
-	201	87.111111					
-	6.	52.5 5	2	22.5	/ / / / / / / / / / / /	1,1,0,1,1	
-		*****	.31,25	14.11111	1.4.1.1.1.1.1	.875	.875
-	111	2	.3/25	14.1.1.1.1.1	14	1.1.25	1.1.25
- 2							
3	0 3 7 3 7	······································	1.68/8	100.	35	39.95	22.
-	à	.75,	-49	29000			
-	èn n	73	d .	14.111111	/6.	1.4.1.1.1.4.1	/6
-	Sec.	30.				-	
	30/	23	3.95	// //	6	8	6
	LEN CA	RD					
	_			* *			
(ہ							

I 3 NOTE: A trailer card must follow the last structure card containing data

.

2749

B**-**3

FORM C-		WDAM	ING STATE HIGHWA'	Y DEPARTMENT		
Nev. 3/11/65			CHEYENNE WY BRIDGE DIVISI	COMING	SHEET NO	0 0F 4
//EXEC	BRSYSØØ				CHECKED	
			DESIGN SYSI	LEM	Vioyee Dept. P ov. Jab 40. 68 Code D / Code 75 C	Work Str. : Code No. 80
I COMMEN	T CARD					<u> </u>
ю 2 —	5		-			đ
	ENTRY I	ENTRY 2	ENTRY 3	ENTRY 4	ENTRY 5	ENTRY 6
4 4 4	55 6	25	35	45	55	65 1
<u>e</u> <u>e</u>	29.11111	9	4	6.	-	
0 E	23	4	15	9.	4	9
+ + - - -						
	1//	1				
ès -				.55		
S -				. 75		
2/6	1	1	2.1.1.1.1	7		
53	1/04/	2	36000.			
53		40				
ואר ר ר	200.	2	36000.	50000.	50000.	
		26	1.25	6.75	/	20.5
	0 205.	2	36000.			
		48		-	/	
) 23 1	300.	2	36000.	50000.	50000.	
53		26	1.,25,.,1	6.75	//	20.5
2	# 305.	2	36000.			
] [48.			/	
TRAILER	CARD					
1975						
- 3						J

NOTE: A trailer card must follow the last structure card containing data

B**-**4

2750

,

FORA Rev.	A C - 16 3/11/69		MOYW	NG STATE HIGHWA CHEYENNE W' BRINGE DIVIS	AY DEPARTMENT Yoming Sion	SHEET NO	<u>4</u> 0F <u>4</u>
(J //	KEC BI	RSYSØØ			NOIC	CHECKED	DATE 3-6/-/3
				DESIGN SYS	TEM 65	ployee Depl. P ov Jab No. 68Code D / Code 75	VOLA SIT. Code No. 80
C	MMENT	CARD		-			
~ _	3 F			• • • • • • • • • •			
000w ≩0œx	0000 04 -4	ENTRY I 6 IS	ENTRY 2 25	ENTRY 3	ENTRY 4	ENTRY 5	ENTRY 6
-	530	400.	2	36000.	50000.	50000	
-	53/		26.	1.25	6.75,	/	20.5
-	530	500.	2	36000.	50000	50000.	
-) m n		26	1.25,1111	6.75	/	20.5
-	-						
-	4						
-							
-	-						
-	4						
-	-				• • • • • • • • • •		
+	4						
-	4				T T T T T T T T		
-	-				T T T T T T T T		
-	-						
-	-						
-	4				• • • • • • • • • •		
666		2					
NOTE:	A trailer	r card must follow th	ie last structure car	d containing data			

• 42 (24)

B**-**5

••

١

•

APPENI	DIX C
--------	-------

. .

Input Needed for the Sample Problem in Appendix B'Under Modified BRASS System

~

				COLUM	N S			
Care	1 10	11 20	21 30	31 40	41 50	51 60	61 70	71
-	100 Title							
2	Area of tensile steel in positive woment region	Concrete cover	Cuncrete compressive strength	Grade of reinforcing steel	Girder spacing	Top flange width	Slab thickness	Number of girders
~	Number of typical X-sections	Span numbers	Span length 1	Span length 2	Span length 3	Span length 4	Span length 5	Web depth 1
4	Web depth 2	Web depth 3	Neb depth 4	Web depth 5	No.of X-sections for Span 1	No.of X-sections for Span 2	No.of X-sections for Span 3	No.of X-sections for Span 4
ν	No.of X-sections for Span 5	Distance to X-section change 1, Span 1	Distance to X-section change 2, Span 1	Distance to X-section change 1, Span 2	Distance to X-section change 2, Span 2	Distance tu X-section change 1, Span 3	Distance to X-section change 2, Span 3	Distance to X-section change 1, Span 4
÷	Distance to X-section change 2, Span 4	Distance to X-section change 1, Span 5	Distance to X-section change 2, Span 5	First X-section type, Span 1	Second X-section type, Span 1	Third X-section Lype, Span l	First X-section type, Span 2	Second X-section type, Span 2
~	Third X-section type, Span 2	First X-section type, Span 3	Second X-section type, Span 3	Third X-section type, Span 3	First X-section type, Span 4	Second X-section type, Span 4	Third X-section type, Span 4	First X-section type, Span 5
×	Second X-section type, Span 5	Third X-section type, Span 5	X-section type 1	X-section type 2	X-section type 3	Web thickness, X-section, type 1	Web thickness, X-section, type 2	Web thickness, X-section, type 3
6	Bottom flange width, X-section type 1	Bottom flange width, X-section type 2	Bottom flange width, X-section type 3	Top flange width, X-section type]	Top flange width, X-section type 2	Top flange width, X-section type 3	Top flange thickness, X-section type l	Top flange thickness, X-section type 2
10	Top flange thickness, X-section type 3	Bottom flange thickness, X-section type l	Bottom flange thickness, X-section type 2	Bottom flange thickness, X-section type 3	Distribution factor	Truck weight]	Truck weight 2	Truck weight 3
11	Superimposed dead load							

,

APPENDIX D

. .

Listing of the Preprocessor Subroutine in the Modified BRASS System

UHIKAN	2	61	HELEASE	Z.U MATR	UATE = 78345	23/17/11
(THE NET A LOAD		
2000				REAL V.(BU) OP (B) OC. HEAN		
0003				DATA DC, BLANN/2HDC, 2H /		
0004				UATA 0P/8*0.0/		
6000				HEAD (5.4000) A		
000c				HEAN (5.5000)V		
0007			4000	F UKMAT (2044) F DUMAT (4F 1 a - a)		
0000			000 H	FAUMATIAN STREET AN		
0010			0000	F UNMAT 1 160011		
0110						
0012						
013				UP (2) = 6.		
0014				0P(3)=11.		
0015				0P(4)=8.		
0016				0P(5)=2.		
0017				0P(6)=20.		
0018 6010				0H(1)=0.		
6100				UP (8) = 0, 3 1 = 151 × 100 × 20		
1300				WK1FE18+000010F111+1+101014014350 (DP111=81A6K	-	
0023				0P(2)=11.		
0024				UP (3) = 0		
0025				0P (4) = V (1)		
070				0P (5) = 0.88		
0.027				OP(6) = 0		
0028				0H(1)=0		
6200				0P (8) = V (2)		
0030				l=lFlX(0P(2))		
1600				WRITE (8,8000) UP (1), 1, (0P (J), J=3,8		
2500				0P(2)=12.	•	
5500				UP(3)=V(3)		
0034 0035						
00.46				CC.0=(C)=0		
0037						
0036				0P(8)=0.4		
6600				l=[F1X(0P(2))		
0040				WRITE(8,8000)0P(1),I,(0P(J),J=3,8		
1+00				0P (2) = 13.		
0042				ÚP (3) = V (5)		
0044				UP (4) =V (6)		
0045						
0046				UP (7) =9.		
047				0P(8)=9.		
0.04 15				I=IFIX(0P(2))		-
0049				WHITE (8,8000) UP (1),1, (UP (J), J=3, B		•
0020				0h (2) = 1 + •		
1000				0h (3) = 0		
2000 1053				UF (4) = 150. DD / D / = 6		
2004 200				UF (5) = U UP (6) = 1 - AA		
5500				0 + (7) = 0		
0056				0P (8) = 0		
1400				l=lflx(0P(2))		
8400				WHITE (8,8000) OP(1), I, (OP(J), J=3,6)		

• •

PAGE 0001

PAGE 0002																																						
11/47/52						~								-		-								•														
UATE = 78345		(8)				0 10 10				60 10 70		3.8)	60 10 175					60 10 90			3,8)								3+67						3,6)			
MAIN	(8 (6	P(2)) B000)0P(1),1,(0P(J),J= V(10))		ANK 0.	5. - 1 01	0.	5. - 2.01	0.	5.	•	P (2))	8000)(P(1),1,(0P(J),J=		•				• 4 • 0)	0 •	P(2))	B000) 0P(1),1,(0P(J),J=	=1.IC	1.	10.1)	(4)	2	15+1)	-(2)) 4000108(1)-1-108(1)-1-1		(8)			•	((2))	3000)0P(1).L.,(0P(J).J=3	241+24)	34[+33]).f0.l) 60 10 100 241+242
RELEASE 2.0	0P(1)=0C 0P(2)=1. 0P(4)=V(0P(5)=V(0P(5)=0.	I=IFIX(0 WR1TE(8, IC=IFIX(0P(5) = 0	0P(1)=8L 0P(2)=10	$0P(3) = 10^{-1}$	0P (4) = 20	0P (5) =20	0P (6) = 30	0b(1) = 30	UP (B) =40	I = I F I X (0)	70 WRITE (A,	80 0P(3)=40	0 = (4) = 0	0P(5) = 0	0 = (2) = 0	0P (8) = 0	IF (IC.EQ.	0P (4) =50	I = IFIX (OF)	90 WRITE (8.8	1 10 10 10 11	0P(2) = 101	1) = (1) = 0	0P(5) = 0P(05 (1) = 1°((1) = (1) = (1)	LEIFIX (OF WRITE (8. H	0P(2)=102	10 = (E) d0	OP(4) = 0	0P(5)=0.	0 = (18) = 0	$L = IF I \times (OP)$	WH 1 1 1 1 4 4 8	(2) = (2) + (2)	0P (4) = V (3	11 (V (1+20 2) 4× (2) 00
FORTRAN IV GI	0059 0050 0052 0053 0053	0064 0065 0066	0068	0010	1/00	E / 00	0075	0076	0071	6100	0080	0081	0083	0084	0085	0087	0086	0089	0600	2600	0093	0044	0096	1600	9600	0100	1010	2010	0104	0105	0106	0108	6010	0110	2110	0113	0114	ST 10

.

11/4//52																																															
DATE = 78345																																													·	•	
2.0 MAIN U	0P (6) =V (3#1+34) 0P (7) =V (2*1+25) 0P (8) =00 (6)	ur (a) = Ur (a) L=IFIX(0P(2))	WHITE(8,8000)0P(1),L,(0P(J),J=3,8) 1F(V(1+20),Eu,2) 60 TO 100	0P(2)=104.	0h(3)=h(5+1+55)	0P(4)=V(3ª1+35)	07(5)=V(1+10) 02(6)=02(6)	UP (7) = 0	UP (8) = 0	L = IF IX (0P(2))	WHITE (8,8000) 0P(1), L. (0P(J), J=3,8)	CONTINUE	JE (V(1+50).EU.0.)60 TO 300	UP(2)=111.	0h (3) = I	0P(4)=V(1+53)	UF (5) = V (1+50)	(1) = (1 + 62)	0P (8) =V (1+65)	L = IFIX(OP(2))	WHITE (8,8000)0P(1),L,(0P(J),J=3,6)	CONTINUE	0P([])=DC	UF (2) = 2.		0P(5)=100.	0F (6) = V (70)	() (() = ((7)) () (6) = (7))	J=[f]X(OP(2))	WHITE (8, 8000) OP (1), 1, (0P (J), J=3,8)	0P (1) =BLANK	0P(2)=201.	07 (2) = 7 (2) 07 (4) = 0 - 49	04 (5) = 29000.	0P (6) = 0	0+(1)=0	0P(8)#0	L-IFIAUPIC))	WK11E(8,8000)0P(1),1,(0P(J),J=3,A) 0P/21=3A1	00431=13.		0P(5)=14.	0P(6)=16.	0P(7)=14.	JP(8)=16. I=IEIX ∕AD(2)\	HITE (8.8000)00(1).1.700/1) 1-3 0)	00 (2) = 302.
HELFASE												100										200	005								•			•	Ū												
FURTHAN IV 61		0140	0121 0122	0123	0124	0125	0127	0128	0129	0130	1510	0132	, +rl0	5F10	01.16	0137	9510	0140	0141	0142	0143	0 44	0145 0145	0147	0148	6710	0150	1010	0153	0154	0155	0510	9159	9159	0160	0161	2010 2010	0166	0165	0166	0167	0166	0169	0110	0172	0173	0174

PAGE 0003

,

۰.

MAIN

• •

	=3,8)	=3,6) =3,8)	=3,8) 60 10 400	60 T0 400 =3.8)	=3.8) 60 TU 1000 =3.8) =3.8) =3.8) =3.8)
UP (3) = 30. OP (4) = 0 OP (5) = 0 OP (6) = 0 OP (7) = 0	0P(8)=0 I=IFIX(0P(2)) WRITE(A.8000)0P(1),I,(0P(J),J 0P(1)=DC 0P(2)=5. 0P(2)=11.	0P(4)=1. I=IFIX(0P(2)) 0P(1)=BLANK 0P(1)=BLANK 0P(1)=S01. 0P(3)=0 0P(4)=0 0P(4)=0 0P(4)=0 0P(4)=0 0P(6)=0.55 I=IFIX(0P(2)) WRITE(A,0000)0P(1).1.(0P(J).J.	UP(6)=0.75 1=[F1X(0P(2)) WRITE(8,8000)0P(1).1.(0P(J).J) 0P(3)=1. UP(3)=1. UP(4)=1. 0P(4)=1. 0P(4)=0. 0P(5)=0. 0P(6)=0. DP(5)=0. 0P(5)=0	0P(5)=2. 0P(6)=1. 1F(V(53).EQ.0) 0P(7)=3. 0P(7)=3. 0P(8)=1. WRLTE(8.0000)0P(1).T.(0P(J).J. UP(2)=530. 0P(3)=105. 0P(3)=2. 0P(4)=2. 0P(4)=2. 0P(4)=2. 0P(4)=0. 0P(1)=0. 0P(1)=0.	T = [FIX(OP(2)) WRITE(8,6000)OP(1),1,(OP(J),J) F(1C.EQ.1) OP(3)=200. T = [FIX(OP(2)) WRITE(8,8000)OP(1),1,(OP(J),J) WRITE(8,8000)OP(1),1,(OP(J),J) UP(3)=205. UP(3)=200. T = [FIX(OP(2)) OP(3)=300. DP(3)=300. H = [FIX(OP(2)) OP(3)=300. DP(3)=300. H = [FIX(OP(2)) DP(3)=300. H = [FIX(OP(2)) DP(3)=300. H = [FIX(OP(2)) DP(3)=300. H = [FIX(OP(2)) DP(3)=300. H = [FIX(OP(2)) DP(3)=300. H = [FIX(OP(2)) DP(3)=300. H = [FIX(OP(2)) DP(3)=300. DP(3)=300. H = [FIX(OP(2)) DP(3)=300. DP(3)
6 € ~ 6 6	0 - - - - - - - - - - - - - - - - - - -	छे में के के के के की	जिन्द्र स्थित क्षिक स्थित क्षिक क्ष	د ≠ ۵ ۵ − ۲ ۵ 4 ۲ ۵ − ۲ ۵ ۵ 4 4 0 0 0	ノリョン日本ものかりのの まで

2753

PAGE 0005 11/47/52 0ATE = 783450P(3)=305. 1=1F1X(0P(2)) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) F(1C.F0.3) 0P(3)=400. 0P(3)=400. 0P(3)=400. 1=1F1X(0P(2)) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) F(1C.F0.4) 0P(3)=500. 1=1F1X(0P(2)) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) WRITE(8,8000)0P(1),1,(0P(J),J=3,8) F(1C.F0.4) 0P(3)=500. 1=1F1X(0P(2)) 0P(3)=500. 1=1F1X(0P(3)) 0P(3)=500. 1=1F1X(0P(3)) 0P(3)=500. 1=1F1X(0P(3)) 0P(3)=500. 1=1F1X(0P(3)) 0P(3) T=1F1X(0P(2)) WRITE(A,8000)0P(1),1,(0P(J),J=3,8) WRITF(A,8100) END MAIN 0P(3)=505. RELEASE 2.0 1000 FURTHAN IV GI

2760

,

i i

APPENDIX E

••

Output of the Sample Problem Shown in Figure 1 --Same Output was Obtained in Both the Unmodified and the Modified BRASS Systems

-

	2	76	ري ۱۸•STIRRUPS
-78 1			ENTRY 6 0.30000 1.30000 0.40000 9.00000 9.00000 0.0 0.0 M
DATE 12-11 PAGE NO			ENTHY 5 0.0 0.0 0.40000 9.00000 0.0 0.0
			ENTRY 4 20.00000 0.0 0.55000 16.00000 1.88000 0.0
PORTATION	6E	D BY COMPUTER	ENTRY 3 2.00000 0.88000 0.55000 7.50000 7.50000 2.00000
AYS AND TRANS	L GIRDER BRID	UT AS RECEIVE	ENTRY 2 8.00000 0.75000 60000.0000 14.00000 150.00000 150.00000
TWENT OF HIGHW BRIDGE DIV	NO 2 WELDED P	INP	ENTRY 1 11.00000 3250.00000 9.25000 0.0
IRGINIA DEPARI	AMPLE PROBLEM		DATA CODE 6 11 12 13 14 14 1
>	Š		WORK CODE DC DC

- _

•

•

2 e

•

.....

DATE 12-11-78 PAGE NO 2

. .

SAMPLE PHOBLEM NO 2 WELDFD PL GIRDER BRIDGE

1.88 IN 0.0 IN K-FT K-FT KS1 KS1 KS1 S0 IN/FT S0 IN/FT X | T | X **CANTILEVER** KS I KS I **CANTILEVER** KSI SECOND SECOND C3= C6= 0000000 000000 su In Su In 0.088 KSI SQ IN/F1 SQ IN/F1 K-FT K-FT KSI KSI K-F1 K-F1 CANTILEVER CANTILE VER KS I KS I KS I A53= A56= 1300. PSI 1788. PSI FIRST FIRST SIRFSSES, MOMENTS, AND REGUIRED STEEL AREAS FOR REINFORCED CONCRETE DECK 0000000 00000000 z z FC= FC= 1.38 -5.547 K-FT -0.704 K-FT 17.479 KSI 0.0 KSI 1.150 KSI 0.880 SQ IN/FT 0.0 SQ IN/FT -3.120 K-FT -0.704 K-FT 10.693 KSI 0.0 KSI 0.703 KSI 0.880 S0 IN/FT 0.0 S0 IN/FT NEGATIVE MOMENT REGION IN SPANS C2= C5= NEGATIVE MOMENT REGION IN SPANS ALLUWARLE STRESSES FOR INVENTORY RATING-- FS= 24000. PSI ALLOWARLE STRESSES FOR OPERATING RATING-- FS= 33000. PSI sq In Sq In 0.15 5.547 K-FT 0.704 K-FT 18.579 KSI 0.0 KSI 1.051 KSI 0.0 SQ IN/FT 0.750 SQ IN/FT AS2= AS5= FIRST WHEEL LOAD (16.00 KIPS) POSITIVE MOMENT REGIUN IN SPANS 9.00 KIPS) POSITIVE MOMENT REGION IN SPANS 3.120 K-FT 0.704 K-FT 11.366 KSI 0.0 KSI 0.643 KSI NI 0.0 C4= C4= LIVE LOAD MOMENT= DEAD LOAD MOMENT= LIVE LOAD MOMENT= DEAD LOAD MOMENT= ~ REQUIRED AS (10P) REQUIRED AS (80T) NI 05 SECOND WHEEL LOAD FS= FSPRIME= F SPRIME= 0.0 ÷ د F S= EC= AS]= A54=

2783

E-3

SQ IN/FT

SQ IN/FT

0.0 SQ IN/FT 0.750 SQ IN/FT

REQUIRED AS (TOP) REQUIRED AS (BOT)

.

,

DATE 12-11-78 PAGE NO 3

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

ND EVER	K-F1	K-F1	KSI	KSI	KSI	SQ IN/FT	SQ IN/FT
SECO CANTIL	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ST LEVER	K-F1	K-FT	KSI	KS1	KS I	50 IN/FT	SQ IN/FT
FIR	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NEGATIVE MOMENT Region in Spans	-3.120 K-FT	-0.704 K-FT	10.693 KSI	0.0 KSI	0.703 KSI	0.880 SQ 1N/FT	0.0 SQ IN/FT
9,00 KIPS) Positive moment Region in Spans	3.120 K-FT	0.704 K-FI	11.366 KSI	0.0 KSI	0.643 KSI	0.0 SO IN/FT	0.750 SQ IN/FI
THIRD WHEEL LOAD (LIVE LOAD MOMENT=	DEAD LOAD MOMENT=	FS=	FSPRIME=	FC=	REQUIRED AS(TOP)	REQUIRED AS (BOT)

#**

2764

,

-

.

DATE 12-11-78 PAGE NO 4 • •

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

INPUT AS RECEIVED BY COMPUTER

ENTRY 6	d	0.0	400.00000	0.0	87,0000			00000000	00000.10	0.0	1.00000		A7 00000		0.0	1.00000	0.0	87.00000			1.0000	0.0	87.00000	0.0	1 00000		005/8.0	1.12500
ENTRY 5	0		00000.000	0.0	1.00000		110.0000		1 • 0000	0.0	110.50000	0.0	1.00000			00000-011	0.0	1.00000	0.0	110.50000		0.0	1.00000	0.0	110-0000		000/0.0	1.12500
ENTRY 4	0-0	300 0000		0.0	0.0	0.0	2.00000			0.0	1.00000	2.00000	0.0	0.0	1 00000		2.00000	0.0	0.0	1.00000			0.0	0.0	1,00000			14.00000
ENTRY 3	2.0000	205-00000		00000*c0c	110.00000	0.0	87.50000	137.0000			00005.02	137.00000	137.00000	0.0	26.5000		00000.001	137.00000	0.0	26.50000	137-00000		110.000	0.0	22.50000	14.0000		14.0000
ENTRY 2	5.00000	200-00000			110.00000	0.0	1.00000	137.00000	0.0			<.00000	137.00000	0.0	2.00000			131.00000	0.0	2.00000	2.00000			0.0	2.00000	0.31250		
ENTRY I	0.0	105.00000	405-00000		1.00000	87.00000	87.50000	2.00000	87.00000	26.5000		00006.011	3.00000	67.00000	26.50000	110.50000		4.00000	81.00000	26.50000	110.50000	5.00000		01.0000	00005.22	1.00000	2.00000	
DATA CODE	1	100	100		101	201	103	101	102	103		+ 0	101	102	103	104		101	102	601	104	101	CV I	101	501		111	
WURK CODE	ρc																											

-

2795

,

.

DATE 12-11-78 PAGE NO 5

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BHIDGE

INPUT AS RECEIVED BY COMPUTER

ENTRY 6	0.0 0.0 16.00000 0.0
ENTRY 5	0.0 0.0 14.00000 0.0
ENTRY 4	36.00000 0.0 16.00000 0.0
ENTRY 3	100.0000 29000.0000 14.00000 0.0
ENTRY 2	1.68180 0.49000 4.00000 0.0 1.00000
ENTRY 1	0.0 0.95000 13.00000 30.00000 11.00000
DATA CODE	2 201 302 302
WORK CODE	UC DC

2760

. .

-

•••

;

DATE 12-11-78 PAGE NO 6

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

INPUT AS RECEIVED BY THE COMPUTER

		0
ENTRY 6		0.00
ENTHY 5	00000000000000000000000000000000000000	
ENTRY 4	0.0 0.55000 0.75000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
ENTRY 3	0.0 0.0 0.0 2.0000 36000.0000 36000.0000 36000.0000 36000.0000 36000.0000 36000.0000 36000.0000 36000.0000	
ENTRY 2		*************
ENTRY 1	11.00000 0.0 0.0 1.00000 2.00.00000 2.00.00000 3.00.00000 3.00.00000 4.05.00000 5.05.00000 5.05.00000	************
DATA CODE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*****
WUKN LUDE	50	

.

.

,

DATE 12-11-78 PAGE NO 7

SAMPLE PROBLEM NO 2 WELDED PL GINDER RNIDGE

			STRUCTURAL	STEEL REVIEW					
SPAN 1 M 5 TENTHS F	INIO								
DEPTH OF WEB	1	A7.00	TOP FLANGE	THI CKNESS	0.88	BOITOM FLA	NGE THIC	KNESS 0.88	
THICKNESS OF WEB		16.0	TOP FLANGE	WIDTH	14.00	BUTTOM FLA	NGE WIDT	H 14.00	
MATERIALS_EACIOR						1		8	
YIELD STRENGTH OF	WEB	36000.	YIELD STR.	OF TOP FLNG.	36000.	YIELD STR.	0F H01.	FLNG. 36000	•
APPLIED_ACIIONS									
DEAD		TRUCK	1 1	THUCK # 2		TRUCK # 3			
LUAD	PO	SITIVE	NEGATIVE	OSITIVE NEGAT	IVE PO	SITIVE NEGA	TIVE		
MOMENT Z-Z 805	• 65	1368.99	-455.24	0.0	0.0	0.0	0.0		
SHEAR Y-Z -16	16.	36.81		0.0		0.0			
AXIAL X-X 0	0.	0.0	0.0	0.25	0.25	0.25	0.25		
EIRSI LUADING						- - -			
ALLOWABLE STRESSES									
FLEXURE, T. FL.19	.008		FLE	(URE, 8. FL.	1	9800.			
FLEXURE.IN WEB 1	.0086		00	APOSITE CONCRE	ΤE	.0			
SHEAR IN WEB	1880.		RE	ARING STIFFENE	RS	•0			
ACTUAL SIRESSES									
			DESIGN	POINTS					
	Ū	ONE	TWO	THREE	OUR	FIVE	SIX	SEVEN	
SHE AR-N (HOR] ZUNTA	2	•0	0.	1420. 2	200.	1420.	.0	•0	
SHEAR-P (HOR I ZONTA	L)	•0	•0	1420. 2	200.	1420.			
SHEAP IN WEB (VER	TICAL)				954.		•		
MINIMUM WEB IHICKNESS	CRITE	SIA		1					
WITH OUT STIFFENE	RS	0.580	WITH TRANS	SVERSE STIFF.	0.350	WITH LONGI	TUDINAL	STIFF. 0.256	
SILFEENER DATA									
TRANSVERSE STIFFE	NEH-SPI	AC ING	77.76	MOMENT OF INE	RTIA	2.45			
LONGITUDINAL STIF	FENER-1	HOMENT (OF INERTIA	4.75 WIDT	4	.45 IHICKN	ESS	0.16	

• •

ł

.

DATE 12-11-78 PAGE NO B

. .

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

1.13 36000. YIELD SIR. OF BOI. FLNG. 36000. WITH LONGITUDINAL STIFF. 0.257 SEVEN 1.13 BOTTOM FLANGE THICKNESS 14.00 BOTTOM FLANGE WIDTH ••• 0.25 POSITIVE NEGATIVE 0.0 SIX TRUCK # 3 0.25 FIVE 4135. 4135. 0.0 8.64 • 15982. 19800. WITH TRANSVERSE STIFF. 0.579 FOUR 5897. 5897. 0.25 MOMENT OF INERTIA TRUCK # 1 THUCK # 2 POSITIVE NEGATIVE POSITIVE NEGATIVE 254.43 -901.00 0.0 5363. FLEXURE, B. FL. COMPOSITE CONCHETE BEARING STIFFENERS 36000. YIELD STR. OF TUP FLNG. STRUCTURAL STEEL REVIEW TOP FLANGE THICKNESS TOP FLANGE WIDTH 0.0 0.25 DESIGN POINTS THREE 0. 4135. 4135. SILEEENER DAIA TRANSVERSE STIFFENER-SPACING 46.94 LONGITUDINAL STIFFENER-MOMENT OF INERTIA 0.0 • 1 MO 68.42 87.00 0.31 0.0 MINIMUM WEB THICKNESS_CRITERIA WITH OUT STIFFENERS 0.850 • • ONE SHEAR IN WEB (VERTICAL) FLEXURE, T. FL.19800. FLEXURE, IN WEB 19800. MAIERIALS_EACIOR VIELD STRENGIH OF WER 11880. SPAN_2_0_0_IENIHS_POINI INPUL_SECIION_DIMENSIONS_ DEPTH_OF_WEB 77.39 -1803.13 0.0 SHE AR-N (HOR J ZONTAL) SHE AR-P (HOR I ZONTAL) THICKNESS OF WEB DEAD LUAD EIRST LOADING ALLOWABLE SIRESSES SHEAR IN WEB APPLIED_ACIIONS ACTUAL SIMESSES MOMENT Z-Z SHEAH Y-Z X - X AXIAL

E-9

0.18

2.94 THICKNESS

1.00

6.50 THICKNESS

0.0 WIDTH

-AREA

REARING STIFFENERS

1.51 WIDTH

DATE 12-11-78 PAGE NO 9

SAMPLE PROBLEM NO 2 WELDED PL GIRDER ARIDGE

14.00 36000. YIELD STR. OF HOI. FLNG. 36000. 0.88 WITH LONGITUDINAL STIFF. 0.256 SEVEN BOTTOM FLANGE THICKNESS BOTTOM FLANGE WIDTH 0.25 ••• 0.25 XIS POSITIVE NEGATIVE 0.0 0.0 1.22 4.17 THIÇKNESS TRUCK # 3 19800. 0. 0.0 0.25 • 814. FIVE • 0.88 14.00 WITH TRANSVERSE STIFF. 0.265 0.25 1121. MOMENT OF INERTIA • 1262. 0.0 FOUR POSITIVE NEGATIVE FLEXURE, B. FL. COMPOSITE CONCRETE BEARING STIFFENERS HIDIM E0.0 36000. YIELD STR. OF TOP FLNG. STRUCTURAL STEEL REVIEW TRUCK # 2 TOP FLANGE THICKNESS TOP FLANGE WIDTH 0.25 0.0 A14. THREE 0. DESIGN POINTS TWO THRFF POSITIVE NEGATIVE 1371.60 -307.48 30.52 0.0 ••• TRUCK # 1 0.0 87.00 0.31 SHEAR IN WEB (VERTICAL) MINIMUM MEB IHICKNESS CRITERIA WITH OUT STIFFENERS 0.580 • • ONE 11880. 19800. MALERIALS_EACIOR VIELD STRENGTH OF WFB SPAN_2______IENIHS_POINI INPUI_SECTION_DIMENSIONS_ DEPTH_OF_WEB THICKWESS_OF_WEB 839.08 -0.05 FLEXURE, T. FL. 19800. 0.0 SHEAR-N (HURIZUNTAL) SHEAR-P (HORIZONTAL) DEAU LUAD EIRSI LOADING ALLOWABLE SIRESSES FLEXURE, IN WEB SHEAR IN WER APPLIED_ACTIONS MOMENT Z-Z SHEAP Y-Z ACIUAL SIMESSES × I × AXIAL

2770

. .

DATE 12-11-78 PAGE NO 10

SAMPLE PROBLEM NO 2 WELDED PL GIRDER HRIDGE

STRUCTURAL STEEL REVIEW

. .

1.13 36000. YIELD STR. OF BOT. FLNG. 36000. 14.00 WITH LONGITUDINAL STIFF. 0.256 ••• SEVEN BOTTOM FLANGE THICKNESS BOTTOM FLANGE WIDTH 0.18 ••• 0.25 TRUCK # 3 POSITIVÉ NEGATIVE 0.0 0.0 SIX 2.95 THICKNESS 0.0 4134. 4134. FIVE B.64 • 15982. 19800. 1.13 WITH TRANSVERSE STIFF. 0.579 0.25 F0UR 5895. MOMENT OF INERTIA 5895. 5362. POSITIVE NEGATIVE POSITIVE NEGATIVE 244.29 -864.08 0.0 0.0 FLEXURE, R. FL. COMPOSITE CONCRETE BEARING STIFFENERS 1.51 WIDTH 36000. YIELD SIR. OF TOP FLNG. TRUCK N.2 TOP FLANGE THICKNESS TOP FLANGE WIDTH 0.0 4134. 4134. DESIGN POINTS LONGITUDINAL STIFFENER-MOMENT OF INERTIA 244.29 -864.08 68.33 0.0 • • 46°34 TWO TRUCK # 1 0.0 MINIMUM WEB INICKNESS CRITERIA WITH OUT STIFFENERS 0.849 SILEEENER DAIA TRANSVERSE STIFFENER-SPACING 87.00 16.0 • • ONE SHEAR IN WEB (VERTICAL) 19800. 11880. MAJERIALS_EACIOR YIELD STRENGTH OF WEB APPLIED_ACIIONS EIHSI_LQADING AllQuadhe<u>stresses</u> Flexure, T. Fl.19800. Flexure,IN web 19800. SPAN 3 B 1 ENIHS POINT INPUT SECTION DIMENSIONS 77.45 -1810.54 SHEAR-N (HOR I ZONTAL) SHEAR-P (HORIZONTAL) DEAD LOAD THICKNESS OF WEB DEPTH OF WEB SHEAR IN WEB ACIUAL_SIRESSES ×-× MOMENT Z-Z Y - 2 SHEAR AXIAL

1.00

6.50 THICKNESS

0.0 WIDTH

-AREA

BEARING STIFFENERS

2771

E-11

DATE 12-11-78 PAGE NO 11

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

STRUCTURAL STEEL REVIEW

0.88 36000. YIELD STR. OF BOI. FLNG. 36000. WITH LONGITUDINAL STIFF. 0.256 SEVEN BOTTOM FLANGE THICKNESS 0.17 BOTION FLANGE WIDTH • • • 0.25 SIX POSITIVE NEGATIVE 0.0 0.0 1.22 4.70 THICKNESS TRUCK # 3 0.0 FIVE 809. 809. : • 19800. 0.88 14.00 WITH TRANSVERSE STIFF. 0.264 0.25 MOMENT OF INERTIA FOUR 1253. 1253. 0.0 POSITIVE NEGATIVE FLEXURE, B. FL. CUMPOSITE CONCRETE BEARING STIFFENERS 6.03 WIDTH 36000. YIELD STR. OF TOP FLNG. TRUCK # 2 TOP FLANGE THICKNESS TOP FLANGE WIDTH 0.00.00.25 THREE 809. 809. DESIGN POINTS SILFEENER_DAIA_ TRANSVERSE STIFFENER-SPACING 87.00 LONGITUDINAL STIFFENER-MOMENT OF INERTIA 1380.24 -305.60 30.27 0.0 POSITIVE NEGATIVE • . 1 MO TRUCK #] 0.31 87.00 MINIMUM WEB IHICKNESS_CHITERIA WITH OUT STIFFENERS 0.580 • • ONE SHEAR-P(HORIZONTAL) SHEAR IN WEB (VERTICAL) 11880. MATERIALS_EACIOR YIELD STRENGTH OF WER APPLIED_AGIIONS 19800. SPAN__3_@_5_IENIHS_POINI INPUL_SECIION_DIMENSIONS_ DEPTH_OF_WEB 835.3A -0.00 FLEXURE, T. FL.19800. 0.0 SHEAR-N (HURIZUNIAL) THICKNESS OF WEB DEAD LUAD EIRSI_LOADING ALLOWABLE_STRESSES FLEXURE,IN WEB Shear in Web ACTUAL SIRESSES MOMENT Z-Z SHEAR Y-Z AXIAL X-X

.

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

DATE 12-11-78 PAGE NO 12

. .

36000. YIELD STR. OF BOI. FLNG. 36000. 1.13 WITH LONGITUDINAL STIFF. 0.256 ••• SEVEN BOTTOM FLANGE THICKNESS BOTTOM FLANGE WIDTH ••• 0.25 POSITIVE NEGATIVE 0.0 0.0 SIX 8.64 2.95 THICKNESS TRUCK # 3 0.0 4134. 4134. • FIVE 15982. 19800. 1.13 14.00 JP FLNG. TRUCK # 2 POSITIVE NEGATIVE P 0.0 0.0 0.25 WITH TRANSVERSE STIFF. 0.579 F0UR 5896. 5896. MOMENT OF INERIIA 5362. FLEXURE, B. FL. COMPOSITE CONCHETE BEARING STIFFENERS 1.51 WIDTH 36000. YIELD STR. OF TOP FLNG. STRUCTURAL STEEL REVIEW ----TOP FLANGE THICKNESS TOP FLANGE WIDTH 4134. 4134. DESIGN POINTS SHEAR-PRINGLENDIAN SHEAR IN WEB (VERTICAL) SHEAR IN WEB (VERTICAL) MINIMUM WEB IHICKNESS CHILERIA WITH OUT STIFFENERS 0.849 WITH THANSVERSE SILFEENER DATA TRANSVERSE STIFFENER-SPACING 46.94 MOMEN TRANSVERSE STIFFENER-MOMENT OF INERTIA LONGITUDINAL STIFFENER-MOMENT OF INERTIA LONGITUDINAL STIFFENER-MOMENT OF UNERTIA POSITIVE NEGATIVE F 244.29 -864.08 68.29 0.0 • • TWO TRUCK # 1 87.00 0.31 • ONE FLEXURE, T. FL.19800. FLEXURE, IN WEB 19800. 11880. MAIERIALS_EACIOR YIELD STRENGTH OF WEB SPAN 4 0 IENIHS POINT INPUL SECTION DIMENSIONS DEPTH OF WEB 77.50 -1810.54 SHE AR-N (HOR I ZON I AL) SHE AR-P (HOR I ZON I AL) LUAD **THICKNESS OF WEB** DEAU EIRSI_LOADING ALLOWABLE_SIRESSES SHEAR IN WEB APPLIED_ACIIONS ACTUAL_SIRESSES MOMENT Z-Z SHEAR Y-Z × · × AXIAL

2773

E-13

0.18

1.00

6.50 THICKNESS

DATE 12-11-78 PAGE NO 13

SAMPLE PROBLEM NO 2 WELDED PL GIRDER HRIDGE

0.88 14.00 36000. YIELD SIR. OF BOT. FLNG. 36000. WITH LONGITUDINAL STIFF. 0.256 SEVEN 0. 0. BOTTOM FLANGE THICKNESS BOTTOM FLANGE WIDTH 0.17 ••• 0.25 POSITIVE NEGATIVE 0.0 0.0 S1X 1.22 4.70 THICKNESS TRUCK # 3 0.0 0.0 19800. 0. 814. 814. • FIVE 0.88 WITH TRANSVERSE STIFF. 0.265 1262. 1262. 1121. 0.25 MOMENT OF INERIIA POSITIVE NEGATIVE 0.0 FOUR FLEXURE, H. FL. COMPOSITE CONCRETE BEARING STIFFENEHS 6.03 WIDTH 36000. YIELD STR. OF TOP FLNG. TRUCK # 2 STRUCTURAL STEEL REVIEW TOP FLANGE THICKNESS TOP FLANGE WIDTH 0.0 0.0 814. 814. DESIGN POINTS LONGITUDINAL STIFFENER-MOMENT OF INERTIA 1371.60 -304.82 30.52 0.0 0.0 POSITIVE NEGATIVE • • 87.00 TWO TRUCK # 1 87.00 16.0 SHEAR IN WEB (VERTICAL) MINIMUM WEB IHICKNESS CRITERIA WITH OUT STIFFENERS 0.580 SILEEENER DATA TRANSVERSE STIFFENER-SPACING • • ONE FLEXURE, IN WEB 19800. 11880. THICKNESS OF WEB MAIERIALS_EACIOR YIELD STRENGTH OF WEB SPAN 4 0 5 IENIHS POINT INPUT SECTION DIMENSIONS 839.08 0.05 0.0 EIRSI_LOADING Allowable_SIRESSES Flexure, T. Fl.19800. SHE AR-N (HOR I ZONTAL) SHEAR-P (HOR I ZUNI AL) DEAD LOAD SHEAR IN WEB DEPTH OF WEB MOMENT Z-Z Shear Y-Z axial X-X APPLIED_ACIIONS ACTUAL SIRESSES
DATE 12-11-78 PAGE NO 14

. .

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

36000. YIELD STR. OF BOI. FLNG. 36000. 14.00 WITH LONGITUDINAL STIFF. 0.257 ••• SEVEN BOTTOM FLANGE THICKNESS BOTTOM FLANGE WIDTH • • 0.25 SIX POSITIVE NEGATIVE 0.0 0.0 2.93 THICKNESS TRUCK # 3 0.0 4204. 4204. 8.76 FIVE . 15982. 19800. 1.13 WITH TRANSVERSE STIFF. 0.584 0.25 5996. 5996. 5453. MOMENT OF INERTIA POSITIVE NEGATIVE 0.0 FOUR 1.48 WIDTH FLEXURE, B. FL. COMPOSITE CONCRETE BEARING STIFFENERS 36000. YIELD STR. OF TOP FLNG. STRUCTURAL STEEL REVIEW TRUCK # 2 **TOP FLANGE THICKNESS** 0.0 0.0 4204. 4204. DESIGN POINTS TWO THREE TOP FLANGE WIDTH SILEEENER_DATA_ TRANSVERSE STIFFENER-SPACING 46.55 t TRANSVERSE STIFFENER-MOMENT OF INEHTTA LONGITUDINAL STIFFENER-MOMENT OF INEHTTA BEARING STIFFENERS -AREA 0.0 WI -901.80 TRUCK # 1 POSITIVE NEGATIVE 0.0 ... 259.12 69.50 0.0 0.31 87.00 • • 0.857 ONE SHEAR IN WEB (VERTICAL) MINIMUM WEB INICENESS CRITERIA WITH OUT STIFFENERS 0.85 EIPSI LOADING Allowable Sifesses Flexure, T. Fl.19800. Flexure.IN web 19800. 11880. MALERIALS_EACIOR YIELD STRENGTH OF WEB SPAN 5 0 IENIHS POINT INPUT SECTION DIMENSIONS DEPTH OF WEB 79.76 -1803.14 0.0 SHF AR-N (HOR I ZONTAL) SHEAR-P (HORIZONTAL) LUAD THICKNESS OF WEB DEAD SHEAH IN WER APPLIED_ACIIONS ACTUAL SIRESSES 2-X × - × MOMENT Z-Z SHE AR AXIAL

2775

E-15

0.14

1.00

6.50 THICKNESS

0.0 WIDTH

DATE 12-11-78 PAGE NO 15

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

14.00 0.88 36000. YIELD STR. OF ROI. FLNG. 36000. WITH LONGITUDINAL STIFF. 0.256 ... SEVEN BOTTOM FLANGE THICKNESS BOTTOM FLANGE WIDTH POSITIVE NEGATIVE 0.0 0.0 5 0.25 0.25 0.25 SIX 2.45 3.93 THICKNESS TRUCK # 3 1420. FIVE 0. • • 19800. 0.88 WITH TRANSVERSE STIFF. 0.350 0.25 2200. 1954. MOMENT OF INERTIA • POSITIVE NEGATIVE POSITIVE NEGATIVE 1368.99 -450.90 0.0 0.0 36.81 0.0 FOUR FLEXURE, B. FL. COMPOSITE CONCRETE BEARING STIFFENERS 4.75 WIUTH 36000. YIELD SIR. OF TOP FLNG. STRUCTURAL STEEL REVIEW TRUCK # 2 TOP FLANGE THICKNESS TOP FLANGE WIDTH 0.0 • 1420. DESIGN POINTS WO THREE LONGITUDINAL STIFFENER-MOMENT OF INERTIA 0.0 • • 17.76 TWO TRUCK # 1 0.0 0.31 MINIMUM WEB INICKNESS CRILERIA WITH OUT STIFFENERS 0.580 SILEFENER DAIA THANSVERSE STIFFENER-SPACING 87.00 • • ONE SHEAR-P (HORIZONTAL) SHEAR IN WEB (VERTICAL) FLEXURE, IN WEB 19800. 11880. MALERIALS_EACIOR YIELD STRENGIH OF WER SPAN -5 % 5 TENIHS POINT INPUL SECTION DIMENSIONS DEPTH OF WEB EIRSI_LQADING Allowable_Siresses Flexure. T. Fl.19800. 805.65 16.31 0.0 SHE AR-N (HOR I ZONTAL) LUAD THICKNESS OF WEB DEAD SHEAH IN WEB APPLIED_ACIIONS ACIUAL SIBESSES MOMENT Z-Z SHEAR Y-Z ×-× AXIAL

2776

0.23

DATE 12-11-78 PAGE NO 16

. .

SAMPLE PROBLEM NO 2 WELDED PL GIRDER ARIDGE

			INVENIORY RAT	ING FOR SPAN	I 69 5 TENTH		
	TOP FLANGE	VERTICAL	HORIZONTAL	REARING	BEARING	HORIZONTAL	BUT FLANGE
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAK	FI FXURF
				(COMP)	(BUARING)	(COV PLTS)	
- LO - M-	1.162	4 • 886	4.367	* * * * *	****	\$ \$ \$ \$ \$ \$	271.1
NEG.M.	* * * * *	4.886	4,367	* * * *	****	* * * *	20101
			OPERALING RAI	ING EOR SPAN	Le 5 TENTH	(1 (1 0 0))	
	TOP FLANGE	VERTICAL	HORIZONTAL	BEARING	BEARING	HORIZONTAL	RUT FLANGE
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FI FXURE
n	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			(COMP)	(BEARING)	(COV PLTS)	
rus.a.	1.798	6.578	5,869	* * * * *	****	4 4 4 4	1.798
NEG.M.	****	6.578	5.869	* * * *	* * * * *	* * * *	****
			INVENTORY RAT	ING FOR SPAN	HINJI V SE C		
	TOP FLANGE	VERTICAL	HORIZONTAL	BEARING	BEARING	HORIZONIAL	AUT FLANCE
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE
	3	1		(COMP)	(BEARING)	(COV PLTS)	
FUS.B.		3.590	3.162	* * * * *	* * * * *	****	4 4 4 4 4
NE 6. M.	1.211	3.590	3.162	* * * *	****	* * * *	116.1
			OPEHALING RALI	ING EQH SPAN	Z @ 0 TENTH	(LOAU 1)	117.1
	IUP FLANGE	VERTICAL	HOR I ZONTAL	BEARING	REAHING	HORIZONIAL	BOT FI ANGE
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE
M SUG	4 4 4 4 4			(COMP)	(BEARING)	(COV PLTS)	1
NEG M		005.0	4 . 1 6 4	* * * * *	****	* * * *	* * * * *
ME 0 • 11 •	616.2	905.6	4.124	* * * *	* * * *	* * * * *	2.379
	TOP FLANGE	VEDITCAL	INVENTORY RALL	NG EOR SPAN	2 8 5 IENTH	1.040.11	
	FI FYINF			BEAHING	BEARING	HOR I ZONTAL	BOT FLANGE
		JULAN	SHE AK	SILFFENERS	STIFFENERS	SHEAR	FLEXURE
P05.M.	1.135	****	9.401	*****	10CAK [NG) ****	(COV PLIS) *****	1.135

.

2777

•

E-17

...

DATE 12-11-78 PAGE NO 17

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

			TAG ATTNE DAT	THE EOD CDAN			
	TOP FLANGE	VERTICAL	HORIZONTAL	HEARING	BEARING	HORIZONTAL	BOT FLANGE
	FLE XURE	SHEAR	SHEAN	STIFFENERS (COMP)	STIFFENERS (BEARING)	SHEAR (COV PLTS)	FLEXURE
POS.M.	1.771	* * * * *	****	* * * *	***	* * * *	1.771
			INVENTORY BALL	THE EOD CDAN	N N TENTU		
	TUP FLANGE	VFRICAL	HORIZONTAL	AFARING	-2-5-4-16 HEALD	HORIZONIAL	ROT FLANGE
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE
				(CUMP)	(REARING)	(COV PLTS)	
-0S.M.	***	3.593	3.166	* * * *	****	* * * * *	* * * *
VE G.M.	1.256	3.593	3.166	****	* * * * *	* * * *	1.256
			OPERALING RAL	ING FOR SPAN	3 @ 0 1ENTH	(LOAD 1)	2
	10P FLANGE	VERTICAL	HORIZONTAL	BEARING	BEARING	HORIZUNTAL	BUT FLANGE
	FLEXURE	SHE AR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE
				(COMP)	(BEARING)	(COV PLTS)	
-M.20-	****	515.4	4.729	****	****	\$ \$ \$ \$ \$	* * * * *
VEG.M.	2.474	5.312	4.729	****	☆ ☆ ☆ ☆	****	2.474
			INVENIORY RAI	ING FOR SPAN	3 @ 5 IENTH	(LOAU 1)	
	TUP FLANGE	VERTICAL	HOR I ZONTAL	REARING	BEARING	HORIZUNIAL	BUT FLANGE
	FLEXURE	SHE AR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE
				(COMP)	(BEARING)	(COV PLTS)	
.M.20°	1.131	* * * * *	9.480	* * * * *	****	****	1.131
VEG.M.	****	* * * * *	9.480	*****	****	****	* * * *
			UPERALING RAL	ING FOR SPAN	J M S IENTH	(LOAD_1)	
	TOP FLANGE	VERTICAL	- HURIZONTAL	REARING	BEARING	HOR I CONTAL	BUT FLANGE
	FLEXURE	SHEAR	SHEAH	STIFFENERS	STIFFENERS	SHEAR	FLEXURE
				(COMP)	(BEARING)	(COV PLTS)	
,05.M.	1.762	****	****	¢ ¤ ¢ ¤ ¢	****	****	1.762
VEG.M.	* * * *	* * * * *	* * * * *	* * * *	* * * * * *	****	* * * *

\$

.

ŧ

2778

, *.*

. .

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

2779

•

.

*

TRANSPORTATION	
AND	z
HIGHWAYS	BE DIVISIO
OF	2100
DEPARTMENT	He
VIRGINIA	

DATE 12-11-78 PAGE NO 19

SAMPLE PROBLEM NO 2 WELDED PL GIRDER BRIDGE

			OPERATING RAL	ING FOR SPAN	5 @ 0 TENTH	(LOAD 1)		
	TOP FLANGE	VERFICAL	HUR I ZONTAL	BEARING	BEARING .	HORIZONIAL	BOT FLANGE	
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE	
				(COMP)	(BEAHING)	(COV PLTS)		
POS.M.	* * * * *	5.204	4.631	* * * *	****	* * * * *	キキキキ	
NEG.M.	2.379	5.204	4.631	****	* * * * *	\$ C C C \$	2.379	
				1				
			INVENIORY RAL	ING FOR SPAN	5 @ 5 IENTH	(1.000.1)		
	TUP FLANGE	VERTICAL	HORIZONTAL	REAHING	BEARING	HORI ZONTAL	BOT FLANGE	
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAK	FLEXURE	
				(COMP)	(BEARING)	(COV PLTS)		
POS.M.	1.162	8.331	1.351	* * * * *	****	****	1.162	
			OPERALING RAL	ING FOR SPAN	5 @ 5 TENTH	(LOAD 1)		
	TOP FLANGE	VERTICAL	HORIZONIAL	REARING	REARING	HORIZONIAL	BUT FLANGE	
	FLEXURE	SHEAR	SHEAR	STIFFENERS	STIFFENERS	SHEAR	FLEXURE	
				(COMP)	(BEARING)	(COV PLTS)		
POS.M.	1.798	* * * *	* * * *	* * * * *	* * * * *	* * * *	1.798	
T NIVE NT	ODV DATING FOD	COMPLETE	DE CK		ODEDATIAL DATA	1910 COD CONCL		
	UNI NALINU LUN		UCLO	ILUAU II	UTERAL UNITARITO	IND LUN LUNU	AT TE VELA	

(LUAD 1) ****** **STIRRUPS** CONCRETE CONCRETE FLEXUHE 1.791 1.625 NEGATIVE STEEL ****** POSITIVE POS M. 1.875 NEG M. 2.001 STEEL ******* POS M. NEG M.

E-20

_

.

8700

. .

DATE 12-11-78 PAGE NO 20

SAMPLE PROBLEM NO 2 WELDED PL GIRDER ARIDGE

LOAD_RAIING_SUMMARY_SHEEI

CONTROL POINT--SPAN 3 @ 5 TENTH (LOAD 1)

STEEL SECTION 1 (TOP FLANGE FLEXURE) POSITIVE MOMENT RATING FACTOR = 1.131 LOAD RATING = 40.714 TONS

• •

APPENDIX F .

• •

2703

,

Input Needed for BRRAT Program to Solve the Sample Problem of Figure 1

3250 BY	75 14. 875 N50	12514 1.125N50 75 14 .875 N50	12514. 1.125N50	75 14875 N50
7.5 0.	• 312514 • • 8	312514 1	.312514.1.	· · · · · · · · · · · · · · · · · · ·
5666 H520 1 0. .841 137. 137. 110.	81. 81. 87. 87.	87. 87. 87. 87.	87. 87.	81. 87.
100100 9.25 0110, 137.	6187.5	6226.5 62110.5	62137.0	6368.5

2784

. .

2725

APPENDIX G

..

Output of the Sample Problem Shown in Figure 1 Using BRRAT

· · ·

* * * * BRIDGE ANALYSIS AND RATING * * * *

% OF AASHTO IMPACT FACTORS SLC STRESSSP.FLOORTTE1H0RSLCLEVELLL.MATERIALSYSTEM100.100.0.0.0.SGGG

V 0.0 STRINGER 0.0 × UNL 0.0 ۸.0 FLOOPBFAM 0.0 ¥ ٦ND 0.0 K A 7.50 0.0 61PDER 0.0 ٦N c INF LOAD BUG LANE HS20 0.0 1

PARAPET PLUS GIRDER OR CL.OF GIRDER OR ** ROADWAY WIDTH ** SIDEWALK WIDTH IRUSS SPACING TRUSS TO CURB LEFT MEDIAN RIGHT 0.0 0.0 0.0 0.0 DISIK. SLAB SUPER HARD- SIDEWALK FACTUP IHICKNESS HAUNCH DL WARE LIVE LOAD FIC N SYMMETRY 0.441 7.50 0.0 0.0 0.0 0.0 0.3.250 A. Y

	WF BEAM	OP WEB	L X	OR WFB P	LATE							
	HUILT-UP	SECTION	DEF	ніс			10P	PLATE	80110	M PLATE		
ΘE	I NE R I J A	AREA	LEFT	R16H1	>	THICK	WIDTH	THICK	WIDTH	THICK	COMP	ΕY
.50	0.0	0.0	87.00	87.00	0	.3125	14.00	0.0750	14.00	0.8750	z	50.1
• 0 0	0.0	0.0	87.00	87.00	0	3125	14.00	0751.I	14.00	1.1250	z	50.0
.50	0.0	0.0	87.00	87.00	0	.3125	14.00	1.1250	14.00	1.1250	z	50.0
.50	0.0	0.0	87.00	87.00	•	. 3125	14.00	0.8750	14.00	0.8750	z	50.1
.00	0.0	0.0	87.00	87.00	0	.3125	14.00	1.1250	14.00	1.1250	z	5 0 S
.50	0.0	0.0	87.00	A7.00	0	.3125	14.00	1.1250	14.00	1.1250	z	50.0
50	0.0	0.0	87.00	87.00	0	.3125	14.60	0.8750	14.00	0.87.9.0	z	50.5

.

84844 LIVE LOAD - H520 88888

THE LOCATION OF THE CRITICAL SECTION IS AT 137.00 F1. FROM THE LEFT END OF SPAN NO. 3.

.

((((SWR KOO DATAO F HAR ST))))

• •

TENSION COMPRESSION UL 1 DLZ LL + IMPACT MOMENT FOR ALLOWARLE STRESSES FOR Momf NT Moment IR OR SLC IH OR SLC 20544.7 0.0 -21763.8-21763.8-18276.0 27.500 37.500 34.375 27.500 37.500 34.375 -20544.7

 STRESSES DUE TO
 STRESSES DUE TO
 STRESSES DUE TO
 LL
 FOR

 DL1
 DL2
 TR
 DR
 SL
 SL

 DL1
 DL2
 DL2
 TR
 OR
 SL

 DL1
 DL2
 DL2
 TR
 OR
 SL

 DL1
 TOB
 0.0
 12.403
 12.403
 10.415

 HOTTOM FIRER
 11.708
 0.0
 12.403
 12.403
 10.415

 HOTTOM FIRER
 11.708
 0.0
 12.403
 12.403
 10.415

 INVENTORY
 RATING
 12.403
 12.403
 10.415

 INVENTORY
 RATING
 1.2733
 0.415

 SAFE LOAD
 CAPACITY
 2.0795
 SAFE LOAD

••

4 4

.

•

1.

...