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ABSTRACT 

 

Traffic simulation models are increasingly being used in the transportation engineering 

profession—often, to solve complex problems that may not lend themselves to traditional 

analysis techniques.  The application of traffic simulation models has traditionally been at the 

individual vehicle (microscopic) level or aggregate traffic stream (macroscopic) level.  Recently, 

the Virginia Department of Transportation and other agencies have shown interest in mesoscopic 

traffic simulation models, which allow for a level of detail higher than macroscopic models and 

model execution times better than those of microscopic models. 

 

This study proposed a procedure for mesoscopic simulation model calibration and 

validation.  The proposed procedure was demonstrated on a test bed along I-95 in the City of 

Richmond and Chesterfield County, Virginia, using Aimsun Next.  Results of the case study 

indicated that the proposed procedure appears to be properly calibrating and validating the 

mesoscopic simulation model of the test bed.   
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INTRODUCTION 

 

When used properly, traffic simulation models provide a convenient environment for 

evaluating alternative traffic operations and transportation planning solutions in a relatively 

inexpensive and risk-free manner.  Transportation system analyses using traffic simulation 

models have traditionally focused on the macroscopic and microscopic levels of detail.  

Macroscopic models provide a high-level view of the transportation system and are typically 

used to evaluate system-wide issues such as the amount of travel between areas (or zones)—

sometimes segregated by trip purpose, time of day, or travel mode—and route choice from one 

area to another.  Microscopic models, on the other hand, focus on evaluating the effects of 

localized travel demand, geometry, and traffic control on the operational performance (traffic 

flow rates, queuing, speeds, delay, etc.) of transportation facilities by modeling the movements 

of individual vehicles on a network.  Even though microsimulation models provide good 

estimates of traffic operations, they are often not practical for analyzing large areas because the 

time and effort needed for model development and computational needs to execute large area 

models can be prohibitive. 

 

Mesoscopic modeling is performed at an intermediate level of detail between 

macroscopic and microscopic simulation models.  Compared with macroscopic models, 

mesoscopic models can simulate more details of the movements of individual vehicles and 

produce more accurate simulation results.  Compared with microscopic models, mesoscopic 

models can provide significant savings in modeling time and effort, especially for large 

networks, without unduly compromising the accuracy of results.  For example, Dixit et al.  

(2008) evaluated contraflow hurricane evacuation plans for an approximately 90-mile section of 

I-4 in Florida between Tampa and the Orange County line.  Five scenarios were evaluated using 

both the microscopic version of Vissim and a mesoscopic cell transmission model proposed by 

Daganzo (1994).  The results of mesoscopic and microscopic simulation analyses were similar 

(within 5% of each other) for all the metrics reported, including total travel time, evacuation 

clearance time, and excess number of vehicles that were not able to be loaded onto the network.  

However, the computing time for all five scenarios was 100 hours for the microscopic simulation 

analysis and 7.5 minutes for the mesoscopic simulation (Dixit et al., 2008).   
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The basic architecture of traffic simulation models includes inputs on both the supply 

(i.e., links, nodes, and traffic control system) and demand (point-to-point trip movements, link 

volumes, and vehicle routes) components of the transportation network.  Because of the wide 

variety of end users, traffic simulation models are often built and calibrated for specific 

applications, and it is important that the resulting model produces output that is as close to reality 

as possible.  This requires that the default driver behavior and other model parameters are 

adjusted to match those of the specific application and driver population for which the model is 

being developed.  Although it is relatively straightforward to build the supply component and run 

a traffic simulation model, it is considerably more difficult to calibrate the model such that the 

model output matches field-observed data as closely as possible.  This becomes even more 

difficult when large networks are simulated, as in the case of many mesoscopic modeling 

applications. 

 

A study by Appiah et al. (2018) at the Virginia Transportation Research Council (VTRC) 

evaluated the feasibility of using commercially available mesoscopic traffic simulation software 

packages to analyze projects that may have a regional impact such as high occupancy vehicle / 

high occupancy toll (HOV/HOT) lanes and other intelligent transportation system / integrated 

corridor management strategies.  That study compared two mesoscopic simulation software 

packages, Aimsun Next (hereinafter “Aimsun”) and Vissim, in detail and concluded that “both 

seem to provide reasonable simulations of traffic operations and to be suitable for use as analysis 

tools when evaluating potential strategies for large scale networks.”  One major challenge for the 

Virginia Department of Transportation (VDOT) to mainstreaming the deployment of mesoscopic 

models is a lack of well-established procedures for model calibration and validation.  As a 

logical extension of the earlier feasibility study, there is a need for a systemic procedure to 

calibrate and validate mesoscopic simulation models. 

 

 

PURPOSE AND SCOPE 

 

The purpose of this study was to propose a procedure to calibrate and validate 

mesoscopic traffic simulation models that can be implemented by VDOT.  The objectives were 

as follows: 

1. Identify a calibration and validation procedure that is generic and applicable to 

commercially available mesoscopic simulation models. 

 

2. Summarize lessons learned that VDOT engineers can use when developing or 

evaluating mesoscopic simulation projects. 

 

 The proposed procedure was demonstrated using an Aimsun model of a test bed in the 

City of Richmond and Chesterfield County, Virginia.  This study was focused on methods for 

calibration and validation of mesoscopic models.  It did not define specific applications where 

mesoscopic models should be used over microscopic or macroscopic models; those decisions 

should be made by the project manager. 
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METHODS 

 

Four tasks were performed to achieve the study objectives: 

 

1. Conduct a literature review. 

2. Identify the test bed, and develop a base simulation model. 

3. Propose a calibration and validation procedure. 

4. Demonstrate the proposed procedure. 

 

 

Task 1: Conduct Literature Review 

 

The literature on the latest developments with regard to the calibration and validation of 

mesoscopic traffic simulation models was identified.  Results of the literature review helped the 

research team formulate the calibration procedure proposed in this study.  The Transportation 

Research International Documentation (TRID) database was used to search the literature. 

 

 

Task 2: Identify Test Bed and Develop a Base Model 

 

This task involved selecting a test network and developing a base model to demonstrate 

the proposed calibration and validation procedure.  Preference was given to selecting a site that 

included many of the different geometric and traffic control configurations—at-grade and grade-

separated intersections, ramps, and merge and diverge areas—that were likely to be encountered 

in any type of transportation network and therefore likely to cover many of the parameters 

involved in the behavioral models of mesoscopic simulation models.  Preference was also given 

to identifying a site for which relevant input data including network geometry, posted speeds, 

traffic signal timings, and origin-destination (OD) demand data were either readily available or 

could be collected with reasonable effort.  The test network was determined in consultation with 

staff of VDOT’s Central Office. 

 

 

Task 3: Propose a Calibration and Validation Procedure 

 

This task involved proposing a method to calibrate and validate mesoscopic simulation 

models.  The proposed approach was a combination of (1) the three-stage process proposed by 

Kundé (2002), and (2) the implementation by Park and Schneeberger (2003) of a generic 

framework for the systematic calibration of traffic simulation models originally proposed by 

Hellinga (1998) (see Figure 1). 

 

Similar to Kundé’s (2002), the approach proposed in this study involved sequentially 

calibrating the network at increasing levels of complexity, starting with individual segments 

(disaggregate level) and progressing through subnetworks of interconnected links to the network 

as a whole (system level).   
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Figure 1.  Generic Calibration Framework for Traffic Simulation Models.  Adapted from Hellinga (1998). 

At the system level, calibration is viewed as an optimization problem for which the 

problem solver seeks to find the set of parameter values that minimizes the discrepancy (as 

measured by the mean absolute percentage error) between the simulation output (travel times, 

link volumes, etc.) and field-observed data.  Kundé (2002) proposed the simultaneous 

perturbation stochastic approximation (SPSA) method for system level calibration.  However, 

the SPSA method was considered ill-suited for the purpose of this study, which was to propose a 

methodology that can be used by practitioners.  As a consequence, an approach based on the 

optimization of a surface function (or metamodel) was proposed and is intended to be a simpler 

alternative to the SPSA and other more complex optimization methods.  Examples of 

metamodels include linear and nonlinear regression models (Ciuffo et al., 2013; Park and 

Schneeberger, 2003). 

 

A regression function similar to that of Park and Schneeberger (2003) was used to 

approximate the input-output response surface relationship of the simulation model and help 

identify candidate “optimal” parameter sets.  This metamodeling approach was selected because 

it has been shown to be effective for the calibration of a Vissim microscopic traffic simulation 

model (Park and Schneeberger, 2003) and has been successfully applied to the sensitivity 

analysis of an Aimsun mesoscopic model (Ciuffo et al., 2013).  Further, it was considered a 

reasonable balance between the commonly used trial and error method, which can be tedious and 

inefficient, and complex optimization techniques such as genetic algorithms and SPSA, which 

may not have great appeal among practitioners.  A detailed description of the proposed 

procedure is provided later in this report. 
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Task 4: Demonstrate Proposed Procedure 

 

The proposed procedure was demonstrated on a test bed in Richmond, Virginia, using the 

Aimsun mesoscopic traffic simulation software.  The model was calibrated to field-observed 

conditions and validated against independent data sets from the test bed.  Aimsun was selected as 

the software for the case study in consultation with staff of VDOT’s Central Office. 

 

 

RESULTS AND DISCUSSION 

 

Literature Review 

 

This section reviews the literature pertaining to characteristics, applications, and 

calibration of mesoscopic simulation models. 

 

Overview of Mesoscopic Simulation Models 

 

Network Representation 

 

In mesoscopic transportation simulation models, the transportation network is usually 

represented as links (roadway segments) and nodes (junctions).  Roadway segment 

characteristics that may be coded include road type, maximum speed, and number of lanes.  A 

node serves as the transfer module between two adjacent links.  Intersection elements such as 

traffic signal control settings and right-of-way assignment (priority rules) can also be coded.  

Traffic control at a signalized intersection is generally simplified such that the green time and the 

yellow time (or a portion of it) represent a “go” condition and the remainder of the cycle 

indicates a “stop” condition.  Because of this simplification, actuated signal control operation 

may not be fully implemented in mesoscopic simulation.  Conceptually, network links have two 

sections: the running section and the queuing section (Barceló, 2010).  Queues may form at the 

nodes and spillback onto the link.  The length of the queuing section can be determined from the 

vehicle length and the standstill distance.  The running section of the link is not affected by the 

traffic spillback. 

 

Traffic Demand 

 

To build a mesoscopic simulation model, users generally need to define the traffic 

demand and the network configuration.  Traffic demand is typically specified as a set of OD 

matrices that provides the number of vehicles of a given class going from every origin to every 

destination in the network during a specified time interval.  Traffic belonging to the various OD 

pairs enters and exits the network at predefined locations. 

 

For a given demand going from a given origin to a given destination, there are usually 

several possible routes to travel from the origin to the destination, and the vehicles must be 

distributed among these alternative routes.  Assigning traffic to different routes is generally 

complicated by the fact that, in reality, the travel demand patterns change throughout the day 
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(Cascetta, 2009).  Moreover, the road network may also have time-varying characteristics such 

as different traffic signal control strategies during different times of the day.  All of these time 

dependencies must be carefully considered in developing a useful simulation model.  A number 

of techniques are available for assigning traffic to the network.  For example, in the Vissim 

mesoscopic simulation, an iterative simulation approach is used to assign traffic to the network 

dynamically (PTV AG, 2016).  That is, the modeled network is simulated repeatedly and drivers 

choose their routes based on the travel costs (travel time, delay, toll, etc.) experienced from the 

preceding simulations.  The iterations are typically continued for a pre-specified maximum 

number of iterations or until the traffic volumes and travel times on all edges do not change 

significantly from one iteration to the next. 

 

Driving Behavior 

 

Vehicles are simulated as traveling through the network in one of two ways in 

mesoscopic models (Barceló, 2010).  The first approach considers vehicles as a package or 

platoon moving along links.  Mesoscopic software such as CONTRAM adopts this approach 

(Burghout, 2005).  The second approach uses a simplified car following model that enables some 

basic information about individual vehicles to be tracked in the simulation.  Mesoscopic 

simulation tools such as Aimsun and Vissim use this approach.  The volume of traffic on a link is 

heavily influenced by a critical road section parameter: the jam density.  This user-defined 

parameter is the number of vehicles per mile per lane when the link is congested.  It is used to 

define the traffic flow-density relationship. 

 

Two driving behavior parameters are critical to modeling car following behavior in 

mesoscopic models.  The first is the reaction time factor (also called the response time factor), 

which may be the same for all modeled network links and nodes or may be two separate values, 

one for nodes and another for links (Barceló, 2010).  The reaction time parameter determines 

how fast the simulated vehicles react to traffic conditions, be it moving in a platoon or 

responding to changes in traffic signal indication.  The second parameter is the look ahead 

distance.  It is used to define how far a vehicle is going to look for the next possible turn, thus 

making necessary lane changes or selecting the proper lane at an upstream intersection. 

 

The lane changing behavior of vehicles in mesoscopic simulation also varies by software 

(Burghout, 2005).  In general, mesoscopic simulation software packages do not consider lane 

changing behavior within the link.  Instead, the route for a vehicle is determined at the beginning 

of the simulation; when entering a link that is on its path, the vehicle uses the lane that best 

serves the need to stay on its predetermined path.  Some mesoscopic software, for example, 

Aimsun, allows the vehicle to make lane selection when it leaves one link and enters another link 

(Aimsun, 2019). 

 

Applications of Mesoscopic Models 

 

Dixit et al. (2008) evaluated contraflow hurricane evacuation plans for an approximately 

90-mile section of I-4 in Florida between Tampa and the Orange County line.  Five scenarios 

were evaluated using both the microscopic version of Vissim and a mesoscopic cell transmission 
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model proposed by Daganzo (1994).  The results of the mesoscopic and microscopic simulation 

analyses were similar (within 5% of each other) for all the metrics reported, including total travel 

time, evacuation clearance time, and excess number of vehicles that were not able to be loaded 

onto the network.  However, the microscopic simulation analysis took about 800 times longer 

than the mesoscopic simulation (Dixit et al., 2008). 

 

Hou et al. (2013) used mesoscopic simulation to incorporate the impacts of adverse 

weather in traffic condition estimation and prediction.  Mesoscopic simulation models were 

established for Irvine, California; Chicago, Illinois; Salt Lake City, Utah; and Baltimore, 

Maryland.  Chiu et al. used mesoscopic simulation to evaluate contra-flow and phased 

evacuation strategies in a large area over a long time period and applied the proposed 

mesoscopic simulation model to a Houston-Galveston hurricane evacuation scenario (Chiu et al., 

2008).  De Palma and Marchal demonstrated the capabilities of mesoscopic simulation in 

modeling both within-a-day and day-to-day dynamics of large-scale transportation systems (de 

Palma and Marchal, 2002).  Kristoffersson also used mesoscopic simulation to evaluate the 

impacts of cordon pricing on travelers’ departure time, mode choice, and route choice behaviors 

in Stockholm (Kristoffersson, 2013). 

 

Burghout (2005) used a hybrid simulation model to simulate traffic operations on a 

mixed freeway–urban network in Stockholm.  The simulation took approximately 20% less time 

when compared to that of microscopic simulation (Burghout, 2005).  Chen used the hybrid 

simulation to assess the impacts of a large development in New South Wales.  The mesoscopic 

simulation was used to evaluate changes in route choice behavior in a large area surrounding the 

development (Chen, 2014).  Liu et al. used the Aimsun mesoscopic simulation model to evaluate 

traffic dynamics of the Minneapolis–Saint Paul road network in Minnesota after the unexpected 

collapse of the I-35 Bridge (Liu et al., 2011).  Casas et al. demonstrated the advantages of using 

the hybrid microscopic and mesoscopic simulation to evaluate the impacts of an advanced 

traveler information system and tested the approach on parts of the Madrid network that included 

327 centroids, 1,375 intersections, and 3,591 sections (Casas et al., 2011). 

 

Sun et al. (2020) used Aimsun and Vissim to demonstrate the practical application of 

mesoscopic simulation models as tools for evaluating traffic management strategies.  A network 

consisting of a system of freeways in Richmond, Virginia, was prepared and used to evaluate the 

potential impacts of various levels of HOV lane usage on system operations.  Both Aimsun and 

Vissim mesoscopic simulation produced results that were “deemed to be reasonable.” 

 

Calibration of Simulation Models 

 

Hellinga (1998) proposed a framework for systematic calibration of traffic simulation 

models consisting of nine steps: (1) defining study goals and objectives, (2) determining required 

field data, (3) choosing measures of performance, (4) establishing evaluation criteria, (5) 

establishing network representation, (6) determining macroscopic speed-flow-density 

relationships, (7) determining driver routing behavior, (8) determining demand characteristics, 

and (9) evaluating model outputs.  Hellinga (1998) provided useful guidance but did not include 

a direct application of the process to an actual network. 
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Park and Schneeberger (2003) proposed a nine-step procedure for calibration and 

validation of microscopic traffic simulation models, which was generally consistent with 

Hellinga’s (1998) framework.  The nine steps were (1) select measure of effectiveness; (2) 

collect data; (3) identify calibration parameters; (4) develop experimental design; (5) run 

simulation; (6) develop surface function; (7) generate candidate parameter set; (8) evaluate; and 

(9) validate through new data collection.  An example case study using data from a network in 

Fairfax, Virginia, and the Vissim microsimulation model was successfully used to demonstrate 

application of the procedure. 

 

Kundé (2002) proposed a three-stage approach to calibrating mesoscopic traffic 

simulation models, with a focus on calibrating the supply side of such models.  At the 

disaggregate level (first stage), segment speed-density relationships were estimated using field 

data.  These relationships were then refined in carefully selected subnetworks (collections of 

links and nodes) so that interactions among segments could be accounted for (second stage).  The 

ideal subnetwork had either a limited number of route choice options or no route choice options 

(Kundé, 2002).  The use of subnetworks with minimal or no route choice options facilitated the 

estimation of accurate OD demand (at the subnetwork level) and allowed for better simulation of 

traffic dynamics, without the errors inherent in demand estimation in the presence of route 

choice (Kundé, 2002).  The third stage used an optimization approach at the entire network level 

to incorporate demand-supply interactions into the calibration process.  The approach was 

demonstrated on a network in Irvine, California, that consisted of 298 nodes, 618 links, and 

1,373 segments using the DynaMIT mesoscopic simulation model.  A similar approach was 

adopted for calibration of a DynaSmart mesoscopic model of Hampton Roads, Virginia, by Park 

et al. (2010). 

 

Balakrishna et al. (2007) extended the work of Kundé (2002) by incorporating demand 

estimation into the model calibration process.  They used the SPSA algorithm to estimate 

simultaneously “all demand and supply inputs and parameters” for the DynaMIT mesoscopic 

model.  The methodology was demonstrated on a network from Los Angeles, California, with 

243 nodes, 606 links, and 740 segments. 

 

Shafiei et al. (2017) discussed efforts to calibrate a large-scale Aimsun mesoscopic model 

of Melbourne, Australia, using data from multiple sources.  Traffic flow fundamental diagrams 

were calibrated based on empirical data using statistical clustering and classification techniques.  

The OD demand was obtained through a bi-level optimization process that generated OD split 

proportions at the lower level and minimized the gap between observed and estimated traffic data 

at the upper level. 

 

Sensitivity Analysis 

 

Ciuffo et al. (2013) performed a sensitivity analysis of the model parameters of the 

Aimsun mesoscopic model.  Five different test networks, i.e., roundabout, unsignalized 

intersection, signalized intersection, on-ramp, and merge-diverge area, were modeled in a case 

study.  Collectively, the five networks were considered representative of the main configurations 

available in a typical transportation network and deemed to “cover all parameters involved in the 
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behavioral models” that underlie the Aimsun mesoscopic model.  A metamodel-based sensitivity 

analysis technique was used to identify the relative importance of model parameters.  Seven 

parameters were considered in the study: reaction time, reaction time at stop, vehicle length, jam 

density, maximum give-way time, maximum acceleration, and random seed.  The main findings 

were as follows: 

 

 The metamodel-based approach produced results that were considered reliable for all 

but the roundabout scenario. 

 

 In all scenarios, changes in reaction time had the largest effect on the output.  This 

was especially true for the on-ramp, merge-diverge, and signalized intersection 

networks where the “reaction time alone accounts for approximately 90% of the 

variance of the mean travel time.” 

 

 Vehicle length accounted for “a certain share in the output variance for almost all 

network configurations.” 

 

 Maximum give-way time accounted for “a significant amount of the output variance” 

in the unsignalized intersection scenario. 

 

 Reaction time at stop accounted for “just a small amount of output variance” in the 

signalized intersection scenario. 

 

 Random seed accounted for “some 10% of the output variance.” 

 

 

Test Bed and Model Development 

 

Test Bed 

 

The network selected for use as the test bed is shown in Figure 2.  It extends more than 

13 miles along I-95 between State Route 10 (Exit 61) in Chesterfield County and State Route 

195 (Exit 74) in the City of Richmond.  The network consists of I-95, part of the Route 1 

corridor that is parallel to I-95, and urban arterials that intersect with I-95.  It includes seven 

interchanges on I-95, including three interchanges with intersecting limited-access highways 

(Route 195, Route 150, and Route 288).  The test bed also includes 25 intersections on arterials 

and/or freeway ramps.  This test bed was used in a previous study for VDOT: I-95 Existing 

Conditions Vissim Model Development (Kimley-Horn and Associates, 2017).  In the remainder 

of this report, this study is referred to as “I-95 existing conditions study.”  More details about the 

study area can be found in the study report (Kimley-Horn and Associates, 2017). 
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Figure 2.  Test Bed Along I-95 From Downtown Richmond to Route 10 (Kimley-Horn and Associates, 2017) 

 

Overview of the Aimsun Mesoscopic Model 

 

The software used to demonstrate the proposed calibration and validation procedure was 

Aimsun Next, Version 8.4.1 (Aimsun, 2019).  The Aimsun traffic simulator integrates 

macroscopic, mesoscopic, and microscopic simulations and a hybrid simulation (a combination 

of the mesoscopic and microscopic simulations).  An overview of the Aimsun mesoscopic model 

including network representation and behavioral models is provided here. 

 

 

 

 



 

11 

 

Network Representation 

 

Aimsun models the transportation network as a directed graph consisting of four 

geometric elements: centroids, sections, nodes, and turns (Aimsun, 2019).  These are defined as 

follows: 

 

 Centroids are the source and sink of vehicles within the simulation. 

 

 Sections represent the roadway links and segments, and nodes represent the junctions 

and intersections (Nevada Department of Transportation [DOT], 2018).  Section 

characteristics that may be coded include number of lanes, speed limit, and jam 

density. 

 

 Within a node, the turns serve as connectors transferring vehicles between two 

adjacent sections.  Vehicles are assumed to travel at free-flow speed within turns.  

The turn speed and turn length are used to calculate the turn travel time. 

 

Behavioral Models 

 

Vehicle movements in the Aimsun mesoscopic model are governed by three behavioral 

models: car following, gap acceptance, and lane changing / lane selection models (Aimsun, 

2019).  Aimsun calculates the time at which each vehicle enters and exits a section (discrete 

event simulation), rather than the position of each vehicle over time. 

 

A simplified car following model is used to calculate the earliest time at which a vehicle 

exits from a section and thus the section travel time (Mahut, 2001).  The number of vehicles in a 

section is bounded by the section capacity, which is the product of the jam density, number of 

lanes, and section length.  Similarly, the turn capacity is calculated as the product of the jam 

density of the origin section, turn length, and number of destination lanes.  The simplified car 

following model produces a dual-regime speed-density relationship such that the speed V(k) 

remains constant during the free-flow regime but decreases once the density k exceeds a critical 

value and enters the congested regime (Shafiei et al., 2017).  Mathematically this is expressed as 

shown in Equation 1: 

 

 𝑉(𝑘) = 𝑚𝑖𝑛 [𝑉𝑓 ,
1

𝑅
(
1

𝑘
−

1

𝑘𝑗𝑎𝑚
)] [Eq. 1] 

 

where 

 

  Vf = the free-flow speed (mph) 

kjam = the jam density (vehicle/mile/lane) 

R = the reaction time (hour).   
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Equation 1 indicates that for a given value of jam density, the shape of the model (and thus 

calibration of the speed-density relationship) is jointly determined by the free-flow speed Vf and 

the reaction time R. 

 

The lane changing model is used to select entrance and exit lanes when the vehicle exits 

from the upstream section.  However, no lane change occurs inside the section.  At the beginning 

of the simulation, the mesoscopic simulator generates a default lane sequence.  During 

simulation, the lane selection model is used to determine whether a vehicle changes to another 

lane by evaluating the downstream lanes in terms of connector distances, density, and lane 

changing cost (Aimsun, 2019).  The default downstream entrance lane choice is the non-full lane 

that provides the shortest connection.  However, when the vehicle is within the look ahead 

distance, preference is given to the lane closest to the target downstream exit, thus increasing the 

likelihood that the vehicle is routed to its intended destination. 

 

The gap acceptance model is used to model give-way behavior.  When there are two 

vehicles that could be in conflict within a node, the gap acceptance model determines which one 

has priority.  The gap acceptance model has several parameters, including maximum give-way 

time, initial safety margin, final safety margin, and give-way time factor.  The vehicle waits in 

the minor section until it has a gap greater than the initial safety margin.  Once it has waited the 

maximum give-way time multiplied by the give-way time factor, the minimum gap required to 

execute the movement is linearly reduced to the final safety margin. 

 

Model Development 

 

Input data required for the Aimsun model were input for the supply (i.e., links, nodes, and 

traffic control system) and demand (i.e., point-to-point OD flows, link volumes, and vehicle 

routes) components of the transportation network.  The sources of these data are discussed here. 

 

Supply Data 

 

Supply data are usually collected from databases maintained by transportation agencies.  

In this study, the I-95 existing conditions study report (Kimley-Horn and Associates, 2017) and a 

Vissim microscopic model of the test bed from that study were provided to the research team and 

served as the major sources of data.  These data reflect the morning peak hour conditions at the 

test bed in 2016.  The major attributes of the supply elements coded included the following: 

 

 link (or section) attributes such as number of lanes, length, width, grade, and any 

other distinguishing features of the link such as the presence and location of speed 

reduction zones and how links connect to each other and to nodes in the network 

 

 node attributes such as number of approaches, lane widths, and degree and length of 

curvature 

 

 relevant information on the traffic system such as the type of intersection control (i.e., 

signal controlled, stop controlled, or uncontrolled) and the corresponding attributes of 
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each control type (e.g., signal and detector locations, signal timing plans, and priority 

rules for conflicting traffic). 

 

Demand Data 

 

The primary demand data required for mesoscopic simulation are centroid-to-centroid 

trip movements as represented by an OD trip matrix.  The input OD demand data may be 

available from a number of sources including the U.S. Census Bureau’s American Community 

Survey data; data from private sector companies such as StreetLight; and travel demand models.  

The selection of the OD data source may be based on factors such as ease of acquisition, cost, 

and data quality.  Where OD data are unavailable or outdated, incomplete, or inaccurate, reliable 

procedures exist to calculate or update the OD matrices from traffic counts obtained from a 

subset of the network links.  Cascetta (2009) and de Dios Ortúzar and Willumsen (2011) 

described some of the commonly used methods.  Some simulation software including Aimsun 

have some of these synthetic OD matrix estimation procedures built into the software package. 

 

For this study, demand data in the form of centroid-to-centroid OD flows were not 

available.  Instead, OD demand data were estimated using Vissim vehicle input information 

including volumes entering the network every 15 minutes on the entrance links, vehicle 

compositions, and static routing decisions for predefined paths.  The centroids were defined to be 

generally consistent with the vehicle entrance and exit locations in the Vissim model.  Each 

centroid was connected to entrance and exit links that represent the traffic analysis zone entrance 

and exit, respectively.  A total of 63 centroids were defined; each centroid was connected to one 

entrance link and one or more exit links.  A base OD matrix for every 15 minutes from 6:30 to 

8:30 AM was estimated for cars and trucks separately. 

 

Network Coding, Debugging, and Demand Adjustment 

 

The network structure was built by importing a base map from OpenStreetMap.  The 

roadway characteristics such as road classification, lane configuration, connections and turning 

movements at nodes, and speed limit were also imported from OpenStreetMap and then edited 

based on the test bed data obtained from the I-95 existing conditions study report (Kimley-Horn 

and Associates, 2017). 

 

  Turning speeds at nodes were automatically calculated by Aimsun and manually 

checked and adjusted based on the turning speeds retrieved from the Vissim model.  Traffic 

control plans were coded based on the data from the Vissim model. 

 

The network was checked to verify that the configurations were consistent with the field 

conditions.  The data coded into the network, including roadway geometry, traffic control, speed 

setting, vehicle composition, and traffic demand, were reviewed to identify and rectify coding 

errors.  The “Check and Fix Network Tool” in Aimsun was used to identify network coding 

errors such as unconnected lanes, conflicting turns, missing stop or yield signs, and improper 

turning speed.  The Aimsun mesoscopic simulator is based on dynamic traffic assignment 

(Barceló, 2010), and it provides two approaches to dynamic traffic assignment: stochastic route 
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choice, and dynamic user equilibrium (Aimsun, 2019).  The stochastic route choice (SRC) mode 

in Aimsun uses a discrete choice model (binomial, proportional, logit, C-logit, or user-defined 

models) to simulate driver behaviors.  It is more suitable for evaluating a process where drivers 

adjust their behaviors according to day-to-day learning.  The SRC mode is not equilibrium based 

and thus does not have a convergence criterion.  Multiple runs (replications in the Aimsun SRC 

mode experiment) must be conducted for each scenario to reduce stochastic variability.  With the 

dynamic user equilibrium (DUE) mode in Aimsun, the behavioral assumption on how drivers 

choose the routes is consistent with the DUE principle (Aimsun, 2019).  The simulator calculates 

the shortest path (taking into account the estimated link costs on available paths) in each 

iteration/interval and updates the path flows using the method of successive averages (MSA) or 

gradient-based algorithms.  No route choice models are involved in the DUE mode.  The 

simulation time of one simulation run may be longer in the DUE mode than in the SRC mode 

depending on the convergence criterion used, but the DUE mode may require fewer replications 

than the SRC mode because a DUE mode experiment in Aimsun runs a simulation multiple 

times, adjusting the path assignments on each iteration.  The iterative nature of the DUE mode 

reduces the reliance on results from a single seed simulation run (Aimsun, 2019).  In this study, 

the DUE mode was used.  Three user equilibrium algorithms (gradient-based method, MSA, and 

weighted MSA) are available in Aimsun.  The MSA implemented in Aimsun was proposed by 

Florian et al. (2002).  The MSA algorithm redistributes the flows among the available paths in an 

iterative procedure; a new shortest path from an origin to a destination at a time interval is 

computed at iteration n and then the path flows are updated (Aimsun, 2019).  The weighted MSA 

implemented in Aimsun was proposed by Liu et al. (2007).  The difference between MSA and 

weighted MSA is that in iteration n of the algorithm, 1/n of the demand is moved in MSA and 

2/(n+1) of the demand is moved in weighted MSA.  The MSA was selected in this case study 

because this algorithm is computationally efficient.  The time interval between recalculations of 

the shortest path was set to 15 minutes to be consistent with the interval of OD matrices.  The 

stopping criterion was set to a maximum of 50 iterations or a 0.5% of relative gap.    

 

Field-observed peak hour volumes at critical road sections were obtained from the I-95 

existing conditions study report (Kimley-Horn and Associates, 2017).  With these peak hour 

volumes as ground truth, the base OD matrices estimated from Vissim vehicle input information 

were adjusted using the “Static OD Adjustment Tool” in Aimsun such that traffic volumes 

resulting from the Aimsun matrix adjustment process matched the field-observed data as closely 

as possible.  The comparison between peak hour volumes assigned for the critical sections by the 

Aimsun adjusted demand and the field-observed data is provided in Figure 3. 

 

In general, the assigned volumes from the adjusted demand matched field data well (R2 = 

0.97).  However, there were a few locations that showed a significant mismatch between the field 

(or reference) volumes and the Aimsun adjusted volumes.  These outliers were all on low volume 

arterial roads.  One possible reason for these outliers comprises the errors already in the Vissim 

vehicle input data.  Also, actuated signal timing plans retrieved from the Vissim model could not 

be duplicated in Aimsun because of the simplification inherent in the Aimsun mesoscopic signal 

state generator. 
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Figure 3.  Assigned Peak Hour Volumes vs. Field-Observed Peak Hour Volumes.  The red line is the 45 

degree line. 

 

Description of Proposed Calibration and Validation Procedure 

 

The proposed procedure consists of seven steps: (1) determine performance measures and 

evaluation criteria; (2) collect model calibration and validation data; (3) identify calibration 

parameters; (4) conduct disaggregate level calibration; (5) conduct subnetwork level calibration; 

(6) conduct system level calibration; and (7) validate the model with external data.  The 

procedure is consistent with the generic framework for the systematic calibration of traffic 

simulation models proposed by Hellinga (1998).   

 

Step 1: Determine Performance Measures and Evaluation Criteria 

 

Determine Performance Measures 

 

In this substep, performance measures for model calibration and validation are identified 

that are consistent with the application for which the model is being developed.  The 

performance measure could be an average travel time between two locations in the network or 

the distribution of speeds, traffic volumes, or travel times on critical segments.  Other 

performance measures may be used depending on the application that exists on the study 

network.  It is important that the specific performance measure(s) selected are consistent with the 

objectives of the model and can be collected with relative ease both in the field and from the 

simulation software that will be used. 

 

Determine Evaluation Criteria 

 

In this substep criteria are established by which the adequacy of the model results can be 

determined.  Although there are no universally accepted objective criteria to determine when a 
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model can be considered to be suitably calibrated and fit for the purpose (or validated). there are 

many non-statistical (e.g., mean absolute percent error, root mean squared percent error, and 

GEH statistic) and statistical (e.g., t-tests, F-tests, and non-parametric tests) methods that can be 

used to measure how close the simulation output “matches” field-observed data (Hellinga, 1998; 

Rilett, 2020). 

 

Hellinga (1998) noted that budgetary constraints and a general lack of field data in 

sufficient quantity and quality often make it difficult to use the more rigorous statistical 

approaches.  Irrespective of the method used to assess the “goodness-of-fit,” personal experience 

and knowledge of the network by the project team play a crucial role in determining whether the 

model is fit for the purpose.  Several agencies have, often through stakeholder deliberations, 

established thresholds that serve as guidance for determining the adequacy of model calibration 

and validation.  These thresholds are often geared toward evaluating microsimulation models, 

and a literature search of state DOT traffic analysis manuals / guidance documents did not 

identify any published calibration and validation criteria specific to mesoscopic simulation.  The 

absolute percent error and the GEH statistic are two of the common metrics that are used in these 

guidance documents (Department of Planning, Transport and Infrastructure, 2019; VDOT, 

2020).  VDOT has established calibration thresholds and criteria for microscopic simulation in 

VDOT’s Traffic Operations and Safety Analysis Manual (TOSAM), but no considerations for 

mesoscopic simulation are currently included (VDOT, 2020). 

 

Step 2: Collect Data for Model Calibration and Validation 

 

In this step, the data needed for calibration and validation are collected.  Depending on 

the performance measures selected in Step 1, there are a number of data elements that can be 

collected, including link travel times, volumes, speeds, and detector occupancy. 

 

Step 3: Identify Calibration Parameters 

 

Mesoscopic traffic simulation software contains many models (e.g., car following, lane 

change, gap acceptance, lane selection, and route choice) that the user can modify to mimic local 

traffic conditions more accurately (Barceló, 2010; PTV AG, 2016).  In this step, all relevant 

parameters are identified and acceptable ranges for each parameter are determined.  Reasonable 

parameter ranges may be determined through a review of the literature and/or sensitivity 

analyses. 

 

Step 4: Conduct Disaggregate Level Calibration 

 

Flow propagation in commercially available mesoscopic simulation models such as 

Aimsun and Vissim is often based on a macroscopic speed-density function that is derived from 

a simplification of the Gipps car following model (Mahut, 2001; Shafiei et al., 2017).  In this 

step, parameters of the speed-density function are calculated (see Eq. 1) for all network links. 
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Besides using the default parameter values provided by the chosen mesoscopic 

simulation model, there are a number of ways that the speed-density function parameters may be 

determined, including the following: 

 

 Fit a regression model to probe/sensor data (speed, occupancy/density) collected for 

every network segment and aggregated over 5- to 15-minute intervals.  This requires 

large amounts of data that are unlikely to be available for all (or even a majority) of 

the network links.  Besides, since each link can have a separate speed-density 

function, the total number of parameters to be calibrated is potentially very large. 

 

 For simplicity, and to make the best use of potentially limited data, classify network 

links into groups based on “similarity” and derive a single speed-density function for 

each group using data from all members of the particular group. 

 

 Use “typical” or published values from similar studies. 

 

Step 5: Conduct Subnetwork Level Calibration 

 

An assumption inherent in the individual segment level calibration is that there is no 

interaction between contiguous segments.  To account for these interactions, subnetworks 

consisting of collections of links and nodes with several interactions are selected and evaluated.  

The purpose of this step is to assess the accuracy of the speed-density function parameters from 

the disaggregate level calibration and to adjust the parameter values where necessary.  If the 

simulation output “matches” field-observed data for the selected subnetwork(s) links, then the 

speed-density function parameters are considered appropriately calibrated.  Otherwise, the 

parameters may be adjusted and evaluated again or they may be re-calibrated with all other 

model parameters at the system level (see Step 6).  When successful, the disaggregate and 

subnetwork level calibration steps can significantly reduce the number of parameters and the 

effort/resources needed to conduct calibration of all relevant parameters at the entire network 

level. 

 

In selecting subnetwork(s) for calibration, it is important that the selected subnetwork has 

limited or no route choice possibilities so that the subnetwork OD demand can be accurately 

estimated with minimal concern about potential propagation of errors attributable to the OD 

estimation process (in the presence of route choice).  It is also important that there are field data 

(e.g., link volumes) available on the selected subnetwork to which the simulation output can be 

compared. 

 

Step 6: Conduct System Level Calibration 

 

In this step, calibration of all relevant parameters (with the possible exception of the 

speed-density function parameters calibrated in the previous steps) is done at the system or entire 

network level.  System level calibration follows the three-step process proposed by Park and 

Schneeberger (2003) described here. 
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1. Conduct an experimental design.  An experimental design method such as the Latin 

hypercube (Viana, 2016) is used to identify a collection of possible combinations of 

the parameter values spanning the parameter space.  The use of Latin hypercube 

sampling helps limit the number of combinations to a practical level while still 

providing good coverage of the parameter space.  For example, a full factorial design 

using five parameters involves 3,125 possible combinations (55) even if only five 

levels per parameter were considered.  In contrast, a Latin hypercube design using 

five parameters would require only approximately 50 combinations without 

compromising coverage of the parameter space (Santner et al., 2003).  The Latin 

hypercube sample can be easily generated in statistical software such as JMP, SAS, R 

(package “lhs”), and Python (packages “pyDOE” and “surrogate modeling toolbox”) 

by specifying lower and upper bounds for the various parameters.  The simulation is 

then run for each sampled combination of parameter values and the output 

performance measure(s) are noted. 

 

2. Develop a surface function or metamodel.  The results of the simulation runs are used 

to develop a response surface function or metamodel that relates the simulation output 

to the inputs.  The dependent variable of the surface function is the performance 

measure selected in Step 1 and the values of the performance measure are obtained 

from the simulation runs.  The independent variables are the parameters to be 

calibrated and the values of the parameters are obtained from the experiment design 

in Step 6.   

 

3. Evaluate candidate solutions.  The estimated surface function is used to determine 

several combinations of parameter values that provide output close to the field-

observed performance measure.  These constitute candidate solutions to the 

optimization problem.  The simulation is re-run for each candidate solution.  The 

combination that minimizes the discrepancy (as measured by the root mean square 

error, mean absolute percentage error, mean absolute deviation, GEH statistic, etc.) 

between the simulation output performance measure (travel times, speeds, queue 

lengths, etc.) and field-observed performance measure is selected. 

 

Step 7: Validate the Model With External Data 

  

In this step, the calibrated model is checked for validity by comparing simulation output 

with independent field-observed data that were not used as part of the calibration process. 

 

 

Case Study: Application of Proposed Procedure to Test Bed 

 

A mesoscopic simulation model for the test bed shown in Figure 2 was constructed in 

Aimsun.  The study period was 6:30 to 8:30 AM, with the peak hour set from 7:15 to 8:15 AM.  

This section demonstrates an application of the proposed procedure to the test bed with a focus 

on demonstrating the calibration and validation for the peak hour. 
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Performance Measure and Evaluation Criteria 

 

Two performance measures were selected for the calibration and validation process in 

this case study.  These were selected based on the availability of data.  As noted previously, other 

measures may be selected based on the specific details of the study for which a model is being 

calibrated.  Travel times along I-95, Route 150, and Route 288 on the test bed were obtained 

from INRIX probe vehicle data.  Peak hour travel time on one of these paths, I-95 Northbound 

between Route 10 (Exit 61) and Route 195 (Exit 74A), was used as the performance measure for 

model calibration.  Peak hour volumes on critical roadway sections and those for critical 

intersection turning movements were used as performance measures for the validation process.  

Peak hour volumes on relevant sections were also used for the subnetwork level calibration. 

 

The evaluation criteria used in this case study were the “closeness” of the simulation 

output to field-observed data as measured by the absolute percent error (VDOT, 2020) and the 

GEH statistic (Aimsun, 2019; HDR, Inc., 2018).  The evaluation criteria generally depend on the 

purpose of the model.  VDOT’s TOSAM (VDOT, 2020) established the criteria for microscopic 

simulation (Table 1).  Aimsun adapts the GEH statistic for model validation using traffic 

volumes (Aimsun, 2019).  The GEH statistic is defined as indicated in Equation 2: 

 

  𝐺𝐸𝐻 = √
2(𝑚−𝑜)2

(𝑚+𝑜)
                  [Eq. 2] 

where 

m = the modelled hourly flow 

o = the observed hourly flow.  This statistic can be used only for hourly volumes.   

In Aimsun, a GEH less than 5 is considered a good fit of the field-observed data.  A GEH 

greater than 10 is considered unacceptable, and a GEH between 5 and 10 indicates that 

investigation is needed.  Similarly, GEH was used for model validation in a microsimulation 

study for the Nevada DOT (HDR, Inc., 2018); the validation criteria are shown in Table 2.   

 

Table 1.  VDOT’s TOSAM Microsimulation Model Calibration Criteria 

Simulated Measure Acceptance Threshold 

Traffic Volume (vehicles per hour) 

 

85% of the network links and/or turning movement, and a select 

number of critical links and/or turning movements, as determined 

by the District Traffic Engineer or his/her designee, shall meet the 

calibration thresholds 

Within ±20% for <100 vph 

Within ±15% for ≥100 vph to <1,000 vph 

Within ±10% for ≥1,000 vph to <5,000 vph 

Within ±500 vph for ≥5000 vph 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020). 
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Table 2.  Nevada DOT’s GEH Criteria for Traffic Volume Validation  

Simulated Measure Acceptance Threshold 

Traffic Volume (vehicles per hour) 

 

>95% of links/turns shall meet GEH 

acceptance thresholds 

GEH < 5 for >85% of individual links 

GEH < 10 for 100% of individual links 

GEH < 5 for >75% of all turns 

GEH < 10 for >95% of all turns 

 

Calibration and Validation Data 

 

Field-observed peak hour volumes at critical road sections were obtained from the I-95 

existing conditions study report (Kimley-Horn and Associates, 2017).  In addition, peak hour 

turning movement volumes at 11 critical intersections and entering volumes at 12 other 

intersections were also obtained from the report.  These data were used for calibration and 

validation. 

  

One year of detector data, including average speed and occupancy collected in 15-minute 

intervals, was collected from 15 detectors on the I-95 mainline in the study area.  These data 

were used to estimate the speed-density relationship for the disaggregate level calibration.  Ramp 

detector data were collected but not used because speed readings were missing. 

 

Probe speed and travel time from INRIX were collected for sections on I-95, Route 150, 

and Route 288 in the study area.  These data were collected in 15-minute intervals for 2016. 

 

Calibration Parameters 

 

Calibration parameters and their thresholds should be identified at the beginning of a 

project (Nevada DOT, 2018).  Based on the review of literature, seven parameters and their 

thresholds were identified for calibration in this case study (Appiah et al., 2018; Ciuffo et al., 

2013).  These parameters were (1) free-flow speed, (2) reaction time, (3) reaction time at traffic 

light, (4) jam density, (5) maximum give-way time, (6) look ahead distance for freeway sections, 

and (7) look ahead distance for other roadway types. These parameters are defined as follows: 

 Free-flow speed is the speed that a vehicle travels when unimpeded in low volume 

conditions.  Free-flow speeds ranging between 30 mph and 75 mph were considered 

in this study. 

 

 Reaction time is the time it takes a driver to react to speed changes in the preceding 

vehicle.  It affects the maximum throughput and the queue propagation speed (Oriol, 

2018).  The default value is 1.2 s.  The range of reaction time values used in this 

study was 0.5 s to 2.0 s. 

 

 Reaction time at traffic light is the time it takes for the first vehicle stopped at a traffic 

light to react to a change from red to green (Aimsun, 2019).  The default value in 

Aimsun is 1.6 s.  The range of values used in this study was 0.5 s to 3.0 s. 
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 Jam density is a local section parameter that sets the maximum traffic density in the 

section and it is used to determine whether a lane is full and when a vehicle can join 

the back of the queue after the first vehicle leaves a full queue (Oriol, 2018).  Jam 

density was assumed to vary between 140 veh/mi/ln and 250 veh/mi/ln. 

 

 Maximum give-way time is a vehicle parameter that sets the maximum time it takes 

to resolve node events with conflicting vehicle movements when a vehicle is in a 

give-way situation.  This parameter affects the gap-acceptance model and lane-

change model.  Values in the range of 1.0 s to 50.0 s were considered in this study. 

 

 Look ahead distance is the distance at which vehicles begin positioning for 

downstream lane changes.  It is a turn parameter and the default values vary by road 

type.  The look ahead distance was allowed to vary between 300 ft and 700 ft for 

freeway sections and 100 ft and 500 ft for all other road types including arterials, 

ramps, and connectors in this study. 

 

Disaggregate Level Calibration 

 

The speed and occupancy data collected from 15 detectors on I-95 were used to estimate 

parameters of the dual-regime model (see Eq. 1).  Density was estimated using Equation 3: 

 

𝑘 =
52.8

𝐿𝑣+𝐿𝑠
× 𝑜                  [Eq. 3]  

where 

 

k = density 

𝐿v and Ls = average lengths for vehicles and detectors 

o = occupancy (%).   

 

Assuming an Lv of 16.4 ft and an Ls of 6.5ft (Shafiei et al., 2017), the density and speed 

relationships were plotted for different lane configuration and speed limit combinations as shown 

in Figure 4.   

 

Detector data were available only on the I-95 mainline.  The available data for the 

congested regime were not sufficient, as shown in Figure 4, which could lead to inaccurate 

calibration results.  Therefore, estimated parameters of the dual-regime model for various classes 

of roadways from Shafiei et al. (2017) were considered for this study.  These parameters, shown 

in Table 3, were estimated using 1 year of data from freeway loop detectors assuming a jam 

density of 230 veh/mi (143 veh/km).  For the lane and speed combinations for which data were 

available on I-95, the calibrated values from the Shafiei et al. study fit reasonably well.  Thus, 

the Shafiei et al. (2017) values were considered acceptable for this case study.  Detector data 

were not available to develop speed-density relationships on arterial roads; therefore, a reaction 

time of 1.2 s was used based on a 2018 mesoscopic simulation study for the area near the test bed 

(Appiah et al., 2018) conducted at VTRC.  A summary of the reaction times used in this study is 

given in Table 4. 
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Figure 4.  Speed-Density Relationships 

 
Table 3.  Calibrated Parameters in Shafiei et al. (2017) 

Lane and Speed 

Settings 

 

Free-flow Speed (kmph) 

 

Reaction Time (s) 

2 lane and 100 kmph 96 1.9 

3 lane and 100 kmph 94 1.8 

4 lane and 100 kmph 93 1.8 

5 lane and 100 kmph 87 2.3 

3 lane and 80 kmph 72 1.4 

4 lane and 80 kmph 76 1.6 

 

Table 4.  Reaction Times Used in This Study 

Lane and Speed 

Settings 

 

Reaction Time (s) 

2 lane and 55 mph  1.4 

3 lane and 55 mph 1.4 

4 lane and 55 mph 1.6 

2 lane and 60 mph 1.9 

3 lane and 60 mph 1.8 

4 lane and 60 mph 1.8 

5 lane and 60 mph 2.3 

2 lane and 65 mph 1.9 

3 lane and 65 mph 1.9 

Others 1.2 
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Subnetwork Level Calibration 

 

A subnetwork consisting of the interchange at I-95 and Route 10 (Figure 5) was selected 

for demonstration of subnetwork level calibration.  This subnetwork was selected because of data 

availability and because there were limited route choice options.  To estimate the local traffic 

demand of this subnetwork, the centroids were first defined by the sections of the base network 

with either a starting node or an ending node inside the subnetwork and also by centroids of the 

base network with at least a connection attached to a node with coordinates lying in the 

subnetwork or to a section inside the subnetwork (Aimsun, 2019).  Then the OD matrices for this 

subnetwork were generated using the “Static Traversal OD Matrix Generation Tool” in Aimsun. 

 

The simulation of the subnetwork was run with the jam density and reaction time 

parameters equal to the values from the disaggregate level calibration.  The calibration results are 

shown in Table 5.  The simulated link flows were all within 5% of equivalent field values.  

Therefore, the speed-density parameter values (reaction times and free-flow speeds in this case 

study) were considered reasonable, so that further adjustment was not needed. 

 

 
Figure 5.  Example of Subnetwork for Calibration 

 
Table 5.  Subnetwork Calibration Results 

Object Observed Volume (vph) Simulated Volume (vph) Relative Difference (%) 

On-ramp to I-95  324 337 -3 

Off-ramp to Route 10 169 164 4 

Mainline diverge section 4205 4104 2 

Mainline between ramps 4036 3952 2 

Mainline merge section  4360 4304 1 
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System Level Calibration 

 

Parameters calibrated at the system level were jam density, reaction time at traffic light, 

maximum give-way time, look ahead distance for freeways, and look ahead distance for arterials.  

Peak hour travel time was used as a performance measure for system level calibration in this case 

study. 

 

Experimental Design 

 

The five parameters to be calibrated were difficult to measure in the field.  The number of 

combinations of reasonable values of these parameters is very large and it is not practical to run 

simulations for all of these scenarios.  The experimental design is used to reduce the number of 

parameter combinations to be tested while achieving reasonable calibration accuracy.  The Latin 

hypercube space-filling design, a widely used experimental design method, was used in this case 

study.  There are no specific criteria for sample size.  A common rule of thumb is to use about 10 

points per dimension (Santner et al., 2003).  For the five calibration parameters, a minimum of 

50 combinations is desired for Latin hypercube design.  Fifty cases of the parameter 

combinations were generated in a Latin hypercube design using JMP statistical software.  These 

parameter combinations are shown in the Appendix.   

 

Development of Surface Function 

 

Peak hour travel time on I-95 Northbound between Route 10 (Exit 61) and Route 195 

(Exit 74A) was used as a performance measure for calibration.  The average peak hour travel 

time on this path was 739 s based on INRIX probe vehicles data.  Mesoscopic simulation was 

run for each of the 50 cases and the performance measure from the simulation was noted.  Using 

the five parameters as independent variables and the performance measure as the dependent 

variable, a surface function was created.  Both linear and nonlinear regression models were 

tested, and the linear regression model expressed in Equation 4 was selected because it was 

simple and provided a reasonably good fit of the data.  The R2 was modest at 0.4; however; the 

model was statistically significant overall based on the F-statistic (F = 3.18, p-value = 0.037) 

(Minitab, 2015). 

 

𝑌 = 479.74 + 2.13𝑋1 − 1.43𝑋2 + 0.34𝑋3 + 0.17𝑋4 + 0.63𝑋5   [Eq. 4]  

 

where 

 

  Y = the performance measure (simulated travel time on I-95 Northbound) 

X1 = reaction time at traffic light (s) 

X2 = maximum give-way time (s) 

X3 = look ahead distance on freeways (ft) 

X4 = look ahead distance on other roads (ft) 

X5 = jam density (vehicle/mile/lane).    
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All variables were statistically significant at the 5% significance level except X1 and X2, 

which were significant only at the 10% (p-value = 0.09) and 20% (p-value = 0.18) levels of 

significance, respectively.  The finding that the reaction at traffic light and maximum give-way 

time variables were not highly statistically significant was not surprising given that the response 

variable was measured along a freeway facility.  Overall, the goodness of fit of this surface 

function was considered reasonable for the purpose of identifying candidate parameter sets for 

further evaluation.  It is noted that the regression model (Eq. 4) is specific to the test bed and 

may not transfer to other networks. 

 

Evaluation of Candidate Solutions 

 

With the surface function, it is possible to identify an optimal combination of the five 

parameters that could produce a good match to the field-observed performance measure.  

Microsoft Excel’s Solver function was used to find candidate solutions (combinations of 

parameter values) for which the surface function output (Y) equaled the field-observed 

performance measure (739 s).  Five such solutions were identified (see Table 5).  Case 6 was one 

of the design points from the Latin hypercube experimental design and it was selected because of 

good travel time results (708 s). 

 

The simulation model was run for all six cases; the values of the performance measure 

are shown in the last row of Table 6.  The result of Case 6 was closest to the field-observed 

travel time, but the differences among all cases were small and the relative difference between 

simulated and field-observed travel time was within 10% for all cases.  Therefore, further 

evaluation using an independent data set (i.e., model validation) was needed to identify the best 

case. 

 
Table 6.  Model Parameters and Simulated Travel Time for the Candidate Cases 

Model Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Reaction time at stop (s) 1.6 1.6 1 1.8 2 1.2 

Maximum give-way (s) 20 35 17 20 10 16 

Look ahead distance on freeways (ft) 300 300 300 300 300 692 

Look ahead distance on other roads (ft) 100 100 100 100 100 182 

Jam density (veh/mi/ln) 230 230 190 230 238 149 

Simulated travel time on I-95 N (s) 687 686 661 684 682 708 

 

Model Validation 

 

Peak hour volume was used as a performance measure for model validation in this 

example.  The field-observed peak volumes included the following: 

 

 peak hour volumes on critical links 

 peak hour volumes for turning movements at critical intersections 

 peak hour entering volumes at other intersections. 

 

Both VDOT’s TOSAM criteria (Table 1) and the Nevada DOT study validation criteria (Table 2) 

were checked for this case study.  The validation results are shown in Tables 7 through 9. 
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Table 7.  Critical Links Validation Results 

 

Case No. 

 

Volume Level 

No. of 

Sections 

TOSAM 

Threshold 

% Meet 

TOSAM 

% GEH 

<5 

% GEH 

<10 

Case 1 Volume ≥5000 15 Within ± 500 vph 100 100 100 

5000>volume≥1000 72 Within ± 10% 89 89 100 

1000>volume≥100 36 Within ± 15% 83 100 100 

volume<100 1 Within ± 20% 100 100 100 

Case 2 Volume ≥5000 15 Within ± 500 vph 100 100 100 

5000>volume≥1000 72 Within ± 10% 87 87 100 

1000>volume≥100 36 Within ± 15% 81 97 100 

volume<100 1 Within ± 20% 100 100 100 

Case 3 Volume ≥5000 15 Within ± 500 vph 46 47 47 

5000>volume≥1000 72 Within ± 10% 50 44 69 

1000>volume≥100 36 Within ± 15% 61 76 96 

volume<100 1 Within ± 20% 100 100 100 

Case 4 Volume ≥5000 15 Within ± 500 vph 100 100 100 

5000>volume≥1000 72 Within ± 10% 86 89 94 

1000>volume≥100 36 Within ± 15% 81 97 100 

volume<100 1 Within ± 20% 100 100 100 

Case 5 Volume ≥5000 15 Within ± 500 vph 100 100 100 

5000>volume≥1000 72 Within ± 10% 86 80 94 

1000>volume≥100 36 Within ± 15% 83 97 100 

volume<100 1 Within ± 20% 100 100 100 

Case 6 Volume ≥5000 15 Within ± 500 vph 87 87 100 

5000>volume≥1000 72 Within ± 10% 49 44 68 

1000>volume≥100 36 Within ± 15% 59 70 89 

volume<100 1 Within ± 20% 100 100 100 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020). 

 

Based on the closeness to field-observed data, the parameters from Case 1 in Table 5 

were identified as the best option.  The results of Case 1 met the GEH criteria used in the Nevada 

DOT study (HDR, Inc., 2018).  The peak hour volumes for critical links and minor intersection 

approaches also met VDOT’s TOSAM microsimulation criteria (VDOT, 2020), but the peak 

hour turning movement volumes did not.  It is worth mentioning that several attempts at 

recalibration and validation including adjusting the input OD matrices multiple times (using the 

“Static OD Adjustment Tool” in Aimsun) did not improve the results.  Mesoscopic simulation in 

Aimsun is an event-based simulation where an event occurs when a vehicle is entering or leaving 

a section or node and the intervening movement is not simulated (Aimsun, 2019).  Mesoscopic 

simulation is much faster for large networks but may provide less accurate results than the 

microscopic simulation, especially for intersections where vehicle movements can be 

complicated.  For low volume links and turning movements, the calibration was more likely to 

meet the GEH criteria than the TOSAM criteria.  The results for volumes greater than 1,000 vph 

were mostly consistent for the two criteria.  When the number of links / turning movements 

under a given volume level was very low (less than 10), the calibration was also more likely to 

meet the GEH criteria. 
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Table 8.  Critical Turning Movement Volumes Validation Results 

 

Case No. 

 

Volume Level 

No. of 

Movements 

TOSAM 

Threshold 

% Meet 

TOSAM 

% GEH 

<5 

% GEH 

<10 

Case 1 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 41 Within ± 15% 80 98 100 

volume<100 18 Within ± 20% 78 100 100 

Case 2 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 41 Within ± 15% 78 92 100 

volume<100 18 Within ± 20% 73 94 100 

Case 3 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 41 Within ± 15% 42 53 60 

volume<100 18 Within ± 20% 72 94 94 

Case 4 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 41 Within ± 15% 66 78 89 

volume<100 18 Within ± 20% 61 94 100 

Case 5 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 41 Within ± 15% 66 78 90 

volume<100 18 Within ± 20% 67 94 100 

Case 6 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 41 Within ± 15% 25 45 62 

volume<100 18 Within ± 20% 72 94 100 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020). 

 
Table 9.  Minor Intersection Approach Entering Volumes Validation Results 

Case No.  

Volume Level 

No. of 

Approaches 

TOSAM 

Threshold 

% Meet 

TOSAM 

% GEH 

<5 

% GEH 

<10 

Case 1 5000>volume≥1000 9 Within ± 10% 89 100 100 

1000>volume≥100 16 Within ± 15% 95 100 100 

volume<100 12 Within ± 20% 83 100 100 

Case 2 5000>volume≥1000 9 Within ± 10% 89 89 89 

1000>volume≥100 16 Within ± 15% 80 100 100 

volume<100 12 Within ± 20% 83 100 100 

Case 3 5000>volume≥1000 9 Within ± 10% 78 89 100 

1000>volume≥100 16 Within ± 15% 81 95 100 

volume<100 12 Within ± 20% 67 100 100 

Case 4 5000>volume≥1000 9 Within ± 10% 89 89 89 

1000>volume≥100 16 Within ± 15% 81 100 100 

volume<100 12 Within ± 20% 83 100 100 

Case 5 5000>volume≥1000 9 Within ± 10% 44 44 78 

1000>volume≥100 16 Within ± 15% 91 95 100 

volume<100 12 Within ± 20% 83 100 100 

Case 6 5000>volume≥1000 9 Within ± 10% 89 100 100 

1000>volume≥100 16 Within ± 15% 66 95 95 

volume<100 12 Within ± 20% 75 100 100 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020). 

In addition to system level validation, the simulation results of Case 1 were assessed for 

several subareas (hereinafter “local networks”) of the test bed.  This was to ensure that the 

network was appropriately calibrated and that generally good validation results at a system or 

global level were not masking poor performance at the local level.  The polygons in Figure 6 

represent four local networks on the test bed.   
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Figure 6.  Four Local Networks for Model Validation 

The validation results are given in Tables 10 through 12.  Similar to the system results, 

the local network validation results met the GEH criteria but not VDOT’s TOSAM criteria, and 

the turning movement volume results were worse than those for link volumes and intersection 

approach entering volumes. 

Summary 

 

This case study demonstrated a procedure for calibration and validation of mesoscopic 

simulation models.  The proposed procedure includes seven steps: (1) determine performance 

measures and evaluation criteria; (2) collect model calibration and validation data; (3) identify 

calibration parameters; (4) conduct disaggregate level calibration; (5) conduct subnetwork level 

calibration; (6) conduct system level calibration; and (7) validate the model with external data.  

Using Aimsun, the procedure was applied to a mesoscopic simulation model for the test bed 

along I-95 in the City of Richmond and State Route 10 in Chesterfield County that included 

roadways of various functional classes and many different geometric configurations. 
  

1 

2 

3 

4 
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Table 10.  Local Network Critical Links Validation Results 

Local 

Network 

 

Volume Level 

No. of 

Sections 

TOSAM 

Threshold 

% Meet 

TOSAM 

% GEH 

<5 

% GEH 

<10 

 1 Volume ≥5000 4 Within ± 500 vph 100 100 100 

5000>volume≥1000 15 Within ± 10% 80 100 100 

1000>volume≥100 7 Within ± 15% 71 100 100 

volume<100 0 Within ± 20% - - - 

2 Volume ≥5000 5 Within ± 500 vph 100 100 100 

5000>volume≥1000 20 Within ± 10% 100 100 100 

1000>volume≥100 16 Within ± 15% 87 100 100 

volume<100 0 Within ± 20% - - - 

3 Volume ≥5000 4 Within ± 500 vph 100 100 100 

5000>volume≥1000 15 Within ± 10% 100 100 100 

1000>volume≥100 7 Within ± 15% 57 100 100 

volume<100 1 Within ± 20% 100 100 100 

4 Volume ≥5000 1 Within ± 500 vph 100 100 100 

5000>volume≥1000 10 Within ± 10% 100 100 100 

1000>volume≥100 6 Within ± 15% 100 100 100 

volume<100 0 Within ± 20% - - - 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020). 

 

 

Table 11.  Local Network Critical Turning Movement Volumes Validation Results 

Local 

Network 

 

Volume Level 

No. of 

Movements 

TOSAM 

Threshold 

% Meet 

TOSAM 

% GEH 

<5 

% GEH 

<10 

1 5000>volume≥1000 0 Within ± 10% - - - 

1000>volume≥100 9 Within ± 15% 78 100 100 

volume<100 5 Within ± 20% 80 100 100 

2 5000>volume≥1000 0 Within ± 10% - - - 

1000>volume≥100 1 Within ± 15% 100 100 100 

volume<100 4 Within ± 20% 75 100 100 

3 5000>volume≥1000 0 Within ± 10% - - - 

1000>volume≥100 15 Within ± 15% 73 100 100 

volume<100 3 Within ± 20% 67 100 100 

4 5000>volume≥1000 2 Within ± 10% 50 100 100 

1000>volume≥100 16 Within ± 15% 88 94 100 

volume<100 6 Within ± 20% 83 100 100 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020). 

 

 

Table 12.  Local Network Minor Intersection Approach Entering Volumes Validation Results 

Local 

Network 

 

Volume Level 

No. of 

Approaches 

TOSAM 

Threshold 

% Meet 

TOSAM 

% GEH 

<5 

%GEH 

<10 

1 5000>volume≥1000 0 Within ± 10% - - - 

1000>volume≥100 1 Within ± 15% 100 100 100 

volume<100 1 Within ± 20% 0 100 100 

2 5000>volume≥1000 1 Within ± 10% 0 10 100 

1000>volume≥100 6 Within ± 15% 83 100 100 

volume<100 4 Within ± 20% 100 100 100 

3 5000>volume≥1000 0 Within ± 10% - - - 

1000>volume≥100 8 Within ± 15% 100 100 100 

volume<100 2 Within ± 20% 50 100 100 

4 5000>volume≥1000 8 Within ± 10% 100 100 100 

1000>volume≥100 1 Within ± 15% 100 100 100 

volume<100 5 Within ± 20% 80 100 100 

TOSAM = VDOT’s Traffic Operations and Safety Analysis Manual (VDOT, 2020); - = not applicable. 
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The adequacy of the calibration and validation exercise was evaluated by comparing the 

simulation output to field-observed data using VDOT’s TOSAM criteria and GEH criteria from a 

Nevada DOT study.  The results showed that the proposed procedure produced acceptable results 

for the case study network.  More than 85% of the peak hour volumes on links and at turns where 

ground truth data were available had a GEH less than 5, and 100% had a GEH less than 10.  The 

simulated travel times were within 20% for average observed travel times on freeways as 

required in VDOT’s TOSAM (VDOT, 2020).  The peak hour volumes on critical links and 

minor intersection approaches met the TOSAM calibration criteria; however, the percentage of 

peak hour turning movement volumes that met the TOSAM thresholds (79%) was less than the 

requirement in TOSAM (85%).  Multiple attempts were made to recalibrate/validate the model 

by adjusting the input OD matrices; however, these did not improve the results.  Based on the 

results of this case study, it appears that mesoscopic simulation models may not achieve the same 

accuracy as the microsimulation models for all network elements (e.g., individual link vs.  

turning volumes).  A separate set of calibration thresholds and criteria, other than those currently 

available in TOSAM for microsimulation analysis, may need to be developed for mesoscopic 

simulation model applications. 

 

 

CONCLUSIONS 

 

 The proposed calibration and validation procedure appears to be effective based on the 

results of the case study.  The calibrated model produced acceptable results based on GEH 

criteria.  The model parameters selected through the proposed method produced results that 

were closer to field-observed data than the default parameters in Aimsun. 

 

 VDOT’s TOSAM (VDOT, 2020) microsimulation calibration thresholds and criteria may not 

be directly applicable for mesoscopic model application.  The peak hour volumes on critical 

links and minor intersection approaches met the TOSAM calibration criteria; however, the 

percentage of peak hour turning movement volumes that met the TOSAM threshold (79%) 

was less than the requirement in TOSAM (85%) even after several attempts at recalibration. 

 

 

RECOMMENDATIONS 

 

1. VDOT’s Traffic Engineering Division (TED) should consider establishing separate criteria 

for mesoscopic model evaluation in future versions of TOSAM.  Currently, VDOT has not 

established calibration and validation criteria or methods for mesoscopic simulation.  The 

volume threshold criteria for microsimulation in the current version of TOSAM seem to 

work well for network links and intersection approaches but not as well for intersection 

turning movements and may need to be adjusted.  Metrics other than the percentage 

difference, such as GEH, could be considered. 
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IMPLEMENTATION AND BENEFITS 

 

Implementation 

 

To implement Recommendation 1, VDOT’s TED will convene a technical advisory 

committee (TAC), similar to the TOSAM TAC, to discuss fully all issues pertaining to 

mesoscopic simulation model applications in Virginia, including the establishment of calibration 

and validation methods and criteria for such models.  This group will convene within 1 year of 

the publication of this report.  The outcome of the TAC deliberations will be clear and concise 

language regarding mesoscopic model applications in TOSAM.  VTRC will work with the TED 

and the TAC to establish criteria for evaluating mesoscopic simulation model applications.  The 

findings in this study are based on a single case study, so additional sensitivity analyses and case 

studies may be required to establish final calibration and validation thresholds. 

 

The TAC will also discuss calibration procedures for mesoscopic models for potential 

inclusion in TOSAM.  The methods included in this report represent robust techniques to achieve 

the highest possible level of calibration.  They are a balance between the commonly used trial-

and-error methods and more complex optimization methods, but they may still be deemed 

complex by some practitioners.  Based on the discussions related to applications and 

calibration/validation thresholds, it is possible that the TAC will want to pursue less complex 

methods to achieve mesoscopic calibration/validation in light of adopted thresholds.  TED, the 

TAC, and VTRC will discuss final methods to be included in TOSAM.   

 

 

Benefits 

 
The benefits of implementing Recommendation 1 will be the consistent and accurate 

application of traffic analyses using mesoscopic simulation models.  Updated mesoscopic simulation 

criteria in VDOT’s TOSAM will help VDOT ensure the quality of work by staff and contractors and 

also ensure that thresholds are reasonable for mesoscopic models.  Better analysis will better meet 

VDOT’s business needs.  Implementation of the proposed procedure will help VDOT analysts 

and consultants calibrate simulation models effectively and thus better utilize mesoscopic models 

for traffic analysis, especially for large networks where microscopic models may not be 

practical. 

 

ACKNOWLEDGMENTS 

 

The authors thank the following VDOT personnel who served on the technical review 

panel for this study: Hyun Cho (VTRC), Jungwook Jun (Transportation Mobility and Planning 

Division), Sanhita Lahiri (Traffic Engineering Division), Jungtaek Lee (Northern Region 

Operations), Paul Szatkowski (Operations Division), and Sharad Uprety (Transportation 

Mobility and Planning Division).  

 

 



 

32 

 

REFERENCES 

 

Aimsun.  Aimsun Next 8.4 User’s Manual.  Aimsun SL, 2019.  
 

Appiah, J., Sun, B., and Park, B.  Mesoscopic Modeling Guidance and Pilot Test.  Unpublished 

Report.  Virginia Transportation Research Council, Charlottesville, 2018.   

 

Balakrishna, R., Ben-Akiva, M., and Koutsopoulos, H.N.  Offline Calibration of Dynamic 

Traffic Assignment: Simultaneous Demand-and-Supply Estimation.  Transportation 

Research Record: Journal of the Transportation Research Board, No. 2003(1), 2007, pp. 

50-58. 

 

Barceló, J.  Models, Traffic Models, Simulation, and Traffic Simulation.  In Fundamentals of 

Traffic Simulation, International Series in Operations Research & Management Science. 

Springer, New York, 2010, pp. 1-62. 

 

Burghout, W.  Mesoscopic Simulation Models for Short-Term Prediction.  PREDIKT Project 

Report.  2005. 

 

Casas, J., Perarnau, J., and Torday, A.  The Need to Combine Different Traffic Modelling Levels 

for Effectively Tackling Large-Scale Projects Adding a Hybrid Meso/Micro Approach.  

Procedia-Social and Behavioral Sciences, Vol. 20, 2011, pp. 251-262. 

 

Cascetta, E.  Transportation Systems Analysis: Models and Applications.  Second Edition. 

Springer, 2009. 

 

Chen, B.  Application of Transport Hybrid Modelling for New Town Planning.  In Australian 

Institute of Traffic Planning and Management (AITPM) National Conference, 2014. 

Adelaide, South Australia, Australia, 2014. 

 

Chiu, Y.-C., Zheng, H., Villalobos, J.A., Peacock, W., and Henk, R.  Evaluating Regional 

Contra-Flow and Phased Evacuation Strategies for Texas Using a Large-Scale Dynamic 

Traffic Simulation and Assignment Approach.  Journal of Homeland Security and 

Emergency Management, Vol. 5, No. 1, 2008, pp. 1-29. 

 

Ciuffo, B., Casas, J., Montanino, M., Perarnau, J., and Punzo, V.  Gaussian Process Metamodels 

for Sensitivity Analysis of Traffic Simulation Models: Case Study of AIMSUN 

Mesoscopic Model.  Transportation Research Record: Journal of the Transportation 

Research Board, No. 2390(1), 2013, pp. 87-98. 

 

Daganzo, C.  The Cell Transmission Model: A Dynamic Representation of Highway Traffic 

Consistent With Hydrodynamic Theory.  Transportation Research, Part B, Vol. 28, No. 

4, 1994, pp. 269-287. 

 

de Dios Ortúzar, J., and Willumsen, L.G.  Modelling Transport. 4th Edition.  John Wiley & 

Sons, New York, 2011. 



 

33 

 

de Palma, A., and Marchal, F.  Real Cases Applications of the Fully Dynamic METROPOLIS 

Tool-Box: An Advocacy for Large-Scale Mesoscopic Transportation Systems.  Networks 

and Spatial Economics, Vol. 2, No. 4, 2002, pp. 347-369. 

 

Department of Planning, Transport and Infrastructure.  Metropolitan Adelaide Traffic Simulation 

and Assessment Model (MATSAM) Traffic Simulation Model Development Guidelines: 

Aimsun Next.  South Australia, 2019. 

 

Dixit, V., Ramasamy, S., and Radwan, E.  Assessment of I-4 Contraflow Plans: Microscopic 

Versus Mesoscopic Simulation.  Transportation Research Record: Journal of the 

Transportation Research Board, No. 2041, 2008, pp. 89-97. 

 

Florian, M., Mahut, M., and Tremblay, N.  Application of a Simulation-Based Dynamic Traffic 

Assignment Model.  In Simulation Approaches in Transportation Analysis-Recent 

Advances and Challenges. Springer, 2005, pp. 1-22. 

 

HDR, Inc.  2017 Aimsun Next Model Development and Calibration Report.  Nevada Department 

of Transportation, Carson City, 2018. 

 

Hellinga, B.R.  Requirements for the Calibration of Traffic Simulation Models.  Proceedings of 

the Canadian Society for Civil Engineering, Vol. 4, 1998, pp. 211-222. 

 

Hou, T., Mahmassani, H., Alfelor, R., Kim, J., and Saberi, M.  Calibration of Traffic Flow 

Models Under Adverse Weather and Application in Mesoscopic Network Simulation. 

Transportation Research Record: Journal of the Transportation Research Board, No. 

2391, 2013, pp. 92-104. 

 

Kimley-Horn and Associates, Inc.  I-95 Existing Conditions Vissim Model Development. 

Virginia Department of Transportation, Richmond, 2017.  

 

Kristoffersson, I.  Impacts of Time-Varying Cordon Pricing: Validation and Application of 

Mesoscopic Model for Stockholm.  Transport Policy, Vol. 28, 2013, pp. 51-60.  

 

Kundé, K.K.  Calibration of Mesoscopic Traffic Simulation Models for Dynamic Traffic 

Assignment.  Ph.D. Dissertation, Massachusetts Institute of Technology, 2002. 

 

Liu, H.X., He, H., and He, B.  Method of Successive Weighted Averages (MSWA) and Self-

Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem. 

Networks and Spatial Economics, Vol. 9, No. 4, 2007. 

 

Liu, H.X., Danczyk, A., and Xiaozheng, H.  Development of the Next Generation Metro-Wide 

Simulation Models for the Twin Cities' Metropolitan Area: Mesoscopic Modeling.  CTS 

11-03.  University of Minnesota, 2011. 

 



 

34 

 

Mahut, M.  A Discrete Flow Model for Dynamic Network Loading.  Ph.D. Thesis, University of 

Montreal, Canada, 2001. 

 

Minitab.  What Is the F-TEST of Overall Significance in Regression Analysis? Minitab Blog, 

June 11, 2015. https://blog.minitab.com/en/adventures-in-statistics-2/what-is-the-f-test-

of-overall-significance-in-regression-analysis.  Accessed July 26, 2021. 

 

Nevada Department of Transportation.  Aimsun Next Modeling Guidelines.  Carson City, 2018. 

 

Oriol, L.  Meso Over Micro: When Good Meso Calibration Can Save the Need for 

Microsimulation: Part Two.  Technical Note #33.  May 2018. 

https://www.aimsun.com/tech_notes/hybrid-micro-meso-2/. Accessed April 17, 2021. 

 

Park, B., and Schneeberger, J.D.  Microscopic Simulation Model Calibration and Validation: 

Case Study of VISSIM Simulation Model for a Coordinated Actuated Signal System. 

Transportation Research Record: Journal of the Transportation Board, No. 1856(1), 

2003, pp. 185-192. 

 

Park, B., Pampati, D.M., and Balakrishna, R.  Architecture for On-Line Deployment of Dynamit 

in Hampton Roads, VA.  In Applications of Advanced Technology in Transportation. 

American Society of Civil Engineers, 2006, pp. 605-610. 

 

Park, B., Jones, T.K., and Griffin, S.O.  Traffic Analysis Toolbox Volume XI: Weather and 

Traffic Analysis, Modeling and Simulation.  FHWA-JPO-11-019.  Federal Highway 

Administration, Washington, DC, 2010. 

 

PTV AG.  VISSIM 9 User Manual.  Karlsruhe, Germany, 2016. 

 

Rilett, L.R.  Using Simulation to Estimate and Forecast Transportation Metrics: Lessons 

Learned.  In CIGOS 2019, Innovation for Sustainable Infrastructure, pp. 23-33.  

Springer, Singapore, 2020. 

 

Santner, T.J., Williams, B.J., and Notz, W.  The Design and Analysis of Computer Experiments. 

Springer, New York, 2003.  

 

Shafiei, S., Gu, Z., Sarvi, M., Saberi, M., and Board, T.R.  Deployment and Calibration of Large-

Scale Mesoscopic Dynamic Traffic Assignment Model of Melbourne, Australia.  TRB 

96th Annual Meeting Compendium of Papers, Washington, DC, 2017. 

 

Sun, B., Appiah, J., and Park, B.  Practical Guidance for Using Mesoscopic Simulation Tools. 

Transportation Research Procedia, Vol. 48, 2020, pp. 764-776. 

 

Viana, F.A.C.  A Tutorial on Latin Hypercube Design of Experiments.  Quality and Reliability 

Engineering International, Vol. 32, No. 5, 2016, pp. 1975-1985. 

 



 

35 

 

Virginia Department of Transportation.  Traffic Operations and Safety Analysis Manual 

(TOSAM), Version 2.0.  Richmond, 2020. 

 



 

36 

 

  



 

37 

 

APPENDIX 
 

CALIBRATION PARAMETERS GENERATION FROM LATIN HYPERCUBE DESIGN 

  
Reaction Time at 

Traffic Light (s) 

Max. Give-

Way Time (s) 

Look Ahead Distance 

on Freeways (ft) 

Look Ahead Distance on 

Other Roads (ft) 

Jam Density 

(veh/mi/ln) 

1 0.76 45.00 544.90 328.57 200.61 

2 2.39 39.00 308.16 459.18 225.31 

3 1.32 9.00 577.55 475.51 178.16 

4 0.91 40.00 504.08 116.33 211.84 

5 2.03 7.00 553.06 271.43 162.45 

6 1.11 1.00 389.80 304.08 214.08 

7 1.37 4.00 585.71 148.98 209.59 

8 1.62 11.00 340.82 108.16 232.04 

9 0.60 33.00 536.73 500.00 171.43 

10 1.72 37.00 381.63 491.84 169.18 

11 1.83 24.00 430.61 279.59 198.37 

12 1.67 29.00 626.53 197.96 196.12 

13 2.64 30.00 659.18 361.22 146.73 

14 2.69 46.00 651.02 206.12 173.67 

15 1.01 21.00 487.76 230.61 243.27 

16 2.29 50.00 520.41 369.39 160.20 

17 1.98 12.00 397.96 426.53 142.24 

18 2.59 14.00 675.51 165.31 236.53 

19 2.08 22.00 667.35 385.71 205.10 

20 2.80 27.00 495.92 467.35 182.65 

21 2.44 6.00 348.98 173.47 184.90 

22 0.55 25.00 332.65 214.29 207.35 

23 2.18 32.00 463.27 132.65 238.78 

24 2.23 8.00 471.43 246.94 241.02 

25 1.27 34.00 634.69 353.06 151.22 

26 1.06 48.00 610.20 157.14 155.71 

27 0.50 20.00 593.88 287.76 187.14 

28 2.13 41.00 422.45 124.49 180.41 

29 0.65 44.00 316.33 402.04 189.39 

30 1.93 13.00 365.31 451.02 227.55 

31 1.57 17.00 446.94 100.00 164.69 

32 1.42 47.00 373.47 263.27 220.82 

33 2.90 23.00 528.57 189.80 193.88 

34 1.78 38.00 512.24 442.86 218.57 

35 3.00 19.00 324.49 312.24 223.06 

36 0.96 28.00 700.00 344.90 229.80 

37 1.88 49.00 683.67 336.73 202.86 

38 1.47 42.00 618.37 222.45 247.76 

39 2.54 36.00 300.00 320.41 166.94 

40 0.70 26.00 406.12 434.69 234.29 

41 0.86 18.00 357.14 393.88 175.92 

42 2.95 15.00 602.04 410.20 250.00 

43 2.85 43.00 479.59 295.92 216.33 

44 1.52 10.00 569.39 418.37 245.51 

45 1.16 35.00 414.29 255.10 144.49 

46 2.74 2.00 438.78 377.55 191.63 

47 2.34 31.00 561.22 140.82 140.00 

48 1.21 16.00 691.84 181.63 148.98 

49 0.81 3.00 455.10 238.78 157.96 

50 2.49 5.00 642.86 483.67 153.47 

 


