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ABSTRACT 

 

Roadway departure (RD) crashes are one of the major causes of fatalities on highways.  

Reducing the number and severity of RD crashes is one of the emphasis areas of the strategic 

highway safety plan for many state departments of transportation in the United States.  Many 

significant efforts have been aimed at reducing RD crashes, and a continued focus on preventing 

these crashes is needed.  The purpose of this study was to identify roadway geometric design, 

roadside, and traffic characteristics that are correlated with RD crashes on rural roads.  Using 

data collected in Virginia from 2014-2018, this study analyzed the characteristics of RD crashes 

on rural roadways and identified how the variation in RD crash frequency and severity is related 

to roadway, roadside, and traffic features. 

 

The study found a significant correlation between the frequency of RD crashes and 

annual average daily traffic, shoulder width, and speed limit.  The number of RD crashes 

increased as the annual average daily traffic and speed limit increased and decreased as the 

shoulder width was increased.  Further analysis using more granular data from two fairly recent 

data sources, SCRIM and iVision, showed promise for further insights into factors influencing 

RD crashes.  In particular, the results showed that these crashes are significantly influenced by 

roadway geometry (curvature and cross slope) and pavement condition (skid resistance and 

roughness). 
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INTRODUCTION 

 

Background 

  

According to the Federal Highway Administration (FHWA), a roadway departure (RD) 

crash is “a non-intersection crash in which a vehicle crosses an edge line, a centerline, or 

otherwise leaves the traveled way” (FHWA, 2019a).  About 52% of all traffic fatalities in the 

United States from 2015-2017 were caused by RD crashes.  A significant proportion of fatalities 

on Virginia’s roads are the result of RD crashes.  From 2014-2019, RD crashes constituted about 

52% (2,332 of 4,425) of fatal crashes in Virginia.  Reducing the number and severity of RD 

crashes is one of the eight emphasis areas in the Virginia 2017-2021 Strategic Highway Safety 

Plan (Virginia Department of Transportation [VDOT], 2017).  

 

To improve traffic safety across the nation, transportation agencies and the research 

community have devoted significant efforts to understand the causes of RD crashes and develop 

effective countermeasures.  Several countermeasures including widening lanes and/or shoulders, 

modifying shoulder types (paved, gravel, composite, turf), using less rigid barrier types, 

installing shoulder rumble strips, improving delineation, and changing alignments (grade, 

horizontal curve radius, etc.) have been shown to reduce the frequency and/or severity of RD 

crashes (American Association of State Highway and Transportation Officials [AASHTO], 

2010; FHWA, 2018). 

 

Based on the literature, the factors associated with RD crashes can be summarized into 

five categories: traffic-related factors, geometric design and environmental factors, human 

factors, roadside factors, and other factors (Al-Bdairi and Hernandez, 2017; Das and Sun, 2016; 

LeBlanc, 2006; Lord et al., 2011).  Traffic volume and speed are both important influencing 

factors.  Highway design factors, including lane width, shoulder width and type, roadside design, 

pavement edge drop-off, horizontal curvature and grades, driveway density, and pavement 

friction, are associated with RD crashes.  Human factors, such as safety belt use, alcohol and 

drug use, age, and gender, also affect RD crashes; other factors include time of day, vehicle type, 

etc.  These factors have random or fixed effects on roadway departures, and for some roadway 

and roadside factors, the effects can vary by study site and drivers (Gong and Fan, 2017; Gordon 

et al., 2013; Kusano and Gabler, 2012; Zou et al., 2014).  Therefore, to implement appropriate 

countermeasures, it is necessary for VDOT to study the characteristics of RD crashes in Virginia 
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and understand the impact of crash-influencing factors on the roadway segments where RD 

crashes are more prevalent.  

 

Problem Statement 

  

Over the years, VDOT has made significant efforts to reduce RD crashes.  Counts of RD 

crashes are used to identify locations for RD safety improvements, and in 2019, network 

screening safety performance functions (SPFs) were developed to identify potential locations for 

RD safety improvements (Kweon and Lim, 2019).  Other tools, including the Roadway 

Departure Safety Implementation Plan (VDOT, 2017) and the Roadway Departure Crash 

Countermeasure Tool (VDOT, 2016), were developed to provide guidance on selecting 

countermeasures to mitigate RD crashes.  However, even with these tools and improvements, a 

continued focus on preventing RD crashes is still needed.  RD crashes are complex by nature, not 

only because of the combination of driver, environmental, and roadway factors, but also because 

of the interaction of multiple elements when only roadway factors are considered.  The main 

strategy to reduce RD crashes is to keep the vehicle on the road; further, a complementary 

strategy is to minimize the effect of a crash should a vehicle leave the road.  Unfortunately, a 

large number of RD crashes occur on rural roads that have limited or no shoulders and very 

limited recovery zones.  

 

A thorough understanding of the characteristics of rural RD crashes in Virginia and the 

factors contributing to these crashes will help VDOT implement countermeasures proactively to 

improve the safety of rural roads.  

 

 

PURPOSE AND SCOPE 

 

The purpose of this study was to identify roadway features and traffic characteristics that 

are correlated with RD crashes on rural roads in Virginia.  The main objectives were as follows: 

 

1. Assess the extent of RD crashes on rural roadways in Virginia. 

 

2. Examine how variation in RD crash frequency and severity is related to roadway 

features and traffic factors. 

 

3. Explore the factors that are currently not included in the VDOT Traffic Engineering 

Division’s (TED) Oracle database (COTEDOP) but may have an effect on RD 

crashes. 

 

4. Develop recommendations for minimizing the risk of RD crashes. 

 

Specific questions that the study sought to address included the following: 
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1. Are locations with narrower shoulders more likely to have more RD crashes?  

 

2. Are locations with limited sight distance with a row of trees more likely to have more 

frequent RD crashes than locations surrounded by grassy fields?   

 

3. Does a certain speed limit combined with other geometric features produce crash 

hotspots?   

 

4. Should VDOT focus on improving shoulders of certain types of roads or perform 

selective clearing in certain conditions?   

 

This study focused on examining the impact of roadway geometric design, traffic, and 

roadway surface condition.  Based on discussions with the study’s technical review panel, the 

analysis was limited to two-lane and multi-lane divided and undivided primary and secondary 

rural highways.  The potential impact of rows of trees (Question 2) was not studied because there 

was an ongoing national research effort at the time of this study—NCHRP 17-72: Update of 

Crash Modification Factors for the Highway Safety Manual—that sought to address this issue, 

among others, in a comprehensive manner. 

 

 

METHODS 

 

To achieve the research objectives, the research team started with an initial review of 

relevant state roadway network inventory and crash databases, followed by an in-depth review of 

pertinent crash reports and site characteristics.  All analyses were performed using standard 

statistical methods for estimating potential causal factors.  

 

 

Literature Review  

 

The literature on the latest developments with regard to RD crash characteristics and 

potential countermeasures was identified.  The Transportation Research International 

Documentation (TRID) database was used to search the literature.  The literature review helped 

identify factors that are known to contribute to RD crashes and potential countermeasures to 

reduce crash risk.  The literature review also helped identify the common methods used to 

analyze RD crashes, which provided insights for statistical modeling in later tasks. 

 

A review of RD crash countermeasures was also conducted.  The main sources for this 

information were FHWA and AASHTO publications and the Crash Modification Factors 

Clearinghouse (FHWA, 2019b).  The objective was to identify low-cost treatments for reducing 

RD crashes on rural roads. 
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Data Collection and Preparation 

 

Based on the results of the literature review and input from the study’s technical review 

panel and other VDOT staff, the research team identified the data needs and collected crash, 

roadway, traffic, and other relevant data.  All data were screened for quality assurance.  

Anomalies and incomplete data were identified and removed.  The primary sources of data were 

COTEDOP and the Road Network System (RNS) database; VDOT’s iVision system (hereinafter 

“iVision”) and SCRIM (the proprietary truck-based multifunctional roadway survey machine) 

provided supplemental data.  Structured Query Language (SQL) codes were developed to 

retrieve and process data from COTEDOP, and four categories of data were collected: roadway 

inventory data, roadway geometry data, traffic volume data, and crash data.  iVision and SCRIM 

were sources of road surface condition data, and they also provided some roadway geometry and 

roadside data.  Each data source is discussed in the following sections. 

 

COTEDOP Roadway and Traffic Data 

 

The scope of this study was limited to two-lane and multi-lane primary and secondary 

rural highways.  The COTEDOP database was first queried to generate an initial list of roadway 

segments that satisfied this scope.  These roadway segments were identified based on the 

following fields and attributes of the database: 

 

 Governmentcontrol = (1. State primary and interstate, 2. State secondary) 

 

 Functionalclass = (2. Rural other principal arterial, 3. Rural minor arterial, 4. Rural 

major collector, 5. Rural minor collector, 6. Rural collector) 

 

 Facilitytype = (0. Two-way undivided, 1–3. Divided with no, partial, or full control of 

access). 

 

Each segment was defined by route name, start milepost, and end milepost.  Roadway 

geo-spatial, geometric, speed limit, and annual average daily traffic (AADT) data for the 

identified segments were retrieved from the database for the years 2014-2018. 

 

Lane width data were not directly available in COTEDOP; instead, lane widths were 

calculated by dividing the surface width information by the number of lanes.  Segments for 

which the calculated lane widths were less than 8 ft or greater than 13 ft were excluded from this 

study.  In addition, short segments (less than 0.1 mile long) and those that had either no AADT 

data available or very low AADT (less than 50 vehicles per day) were excluded from the study.  

The final dataset consisted of 56,443 segments totaling 35,243 miles of roadway. 

 

iVision Data 

 

iVision is a web application for pavement and asset management.  It provides 

synchronized surface condition data, roadway geometry data, and road and pavement images. 

Data can be easily exported using the interface shown in Figure 1.  iVision data were recorded in 
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0.1-mile segments, but segments could be shorter if there is any change in geometry or pavement 

type within 0.1 mile.  GPS locations for the start and end points of each segment were recorded.  

 

 
Figure 1. iVision System Interface 

 

iVision data include more than 100 fields.  The pavement condition variables collected 

included the International Roughness Index (IRI) and the year of last rehabilitation.  IRI is a 

standard pavement roughness measure used worldwide, and it indicates ride quality of a vehicle.  

iVision reported the IRI for both left and right wheel paths, and the average of the two was used 

to represent the segment IRI in this study.  The unit used in iVision is inches per mile. 

 

iVision includes several shoulder condition variables that were not found in COTEDOP.  

Shoulder condition assessments are generally subjective and made by raters following guidelines 

specified by VDOT’s Maintenance Division (VDOT, 2012).  Some of the variables contained in 

the system are as follows: 

 

 Shoulder type: curb, gravel, asphalt, concrete, paved combination (asphalt + 

concrete), unpaved combination (gravel + turf), or none.  Data are recorded for both 

left and right shoulders. 

 

 Shoulder length: total length of shoulder along a segment. 

 

 Shoulder condition: the condition rating for shoulder materials (good, fair, poor).  

The length of shoulder in each of the three conditions is provided.  Data are recorded 

for both left and right shoulders. 

 

 Drop-off: the difference in elevation between the traveled surface and the shoulder.  

Values greater than 3 in are considered high severity, and values between 1.5 and 3 in 

are considered medium severity.  The length of shoulders in each severity category is 

recorded.  Data for both right and left shoulders are available. 
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 Deficient slope: a shoulder slope such that water does not drain away from the 

roadway.  The length of the shoulder with a deficient slope is recorded.  Data for both 

right and left shoulders are available.   

 

 Build-up: vegetation growth or debris build-up that adversely affects drainage.  The 

length of shoulder with build-up is recorded.  Data for both left and right shoulders 

are available.  

 

Geometric variables such as lane width, shoulder width, and number of lanes were also 

collected from iVision.  These variables were collected for mainly exploratory purposes.  The 

statistical analysis in this study used geometry data from COTEDOP, as it is the standard 

database for all kinds of safety analyses for VDOT since the quality of iVision geometry data 

had not yet been evaluated.  The advantage of iVision data is that they are collected on shorter 

segments than those identified in COTEDOP and therefore might better reflect local conditions.  

 

iVision maintains data for only the past 4 years.  iVision data for 2016-2019 were 

available at the time of this study.  The 2016 and 2017 data were for secondary roads only.  

VDOT collects iVision data for 25% of secondary roads in the state every year, and iVision 

keeps one set of statewide data for secondary roads in a 4-year period.  Currently the 2016 data 

cover statewide secondary roads.  Although the year of data collection was recorded as “2016,” 

75% of data were actually collected in previous years.  This would affect the accuracy of 

variables, such as the IRI, changing over time.  Also, a data completeness check found that the 

2016 data did not have data for all secondary roads in the state.  

 

iVision data are directional, but data for lanes in both travel directions may not be 

available at the same time.  Also, the roadway segmentation in both travel directions can be 

different because of different geometry or other factors (e.g., access points on one side of the 

road).  This makes it challenging to combine data for both travel directions.  

 

SCRIM Data 

 

SCRIM is a truck-based multifunctional roadway monitoring device (Figure 2) that can 

simultaneously and continuously collect roadway surface condition and geometry data while 

being driven in the speed range of 25 to 85 km/h (15 to 53 mph).  SCRIM has been widely used 

in European countries for nationwide road surveys.  The FHWA first introduced SCRIM to the 

United States in 2015 to help the states in pavement friction management (Virginia Tech 

Transportation Institute [VTTI], 2015).  VDOT started roadway surveys using SCRIM in 2018 

through VTTI.  These SCRIM surveys comprise a new source of data for pavement skid 

resistance, texture, and roadway alignment.  
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Figure 2.  SCRIM.  Instrumentation is housed in the truck.  

 

SCRIM data were obtained from VTTI in late 2019.  At that time, data were collected on 

selected routes in four of VDOT’s nine districts; however, the majority of data were for interstate 

highways.  Non-interstate data were available for only a few road segments on US 29 in the 

Lynchburg District; US 460 in the Salem District; and US 11, US 58, and US 460 in the Bristol 

District.  Like iVision data, SCRIM data are directional.  The instrument collects data for one 

direction in each run. 

 

The roadway geometry data collected by SCRIM were horizontal curvature (1/m), 

vertical gradient (%), and cross slope (%).  GPS coordinates were included in the data.  The 

surface condition variables collected by SCRIM included the following: 

 

 SCRIM reading (SR): an indicator of skid resistance  

 Mean profile depth (MPD): an indicator of pavement macrotexture. 

 

RAVCON (Figure 3) and SkidVid (Figure 4), the software from the SCRIM vendor, were 

used for data processing.  RAVCON converted the raw data into a text file, and then SkidVid 

used the text file as input to visualize data and export data to a spreadsheet.  The raw SCRIM 

data were collected every 100 mm.  Using SkidVid, SR, MPD, and geometry data were 

aggregated by 10 m (33 ft). 

 

The SR collected at different speeds are corrected to a standard speed of 50 km/h (30 

mph) based on the Design Manual for Roads and Bridges, Volume 7, Section 3, Part 1 (HD 

28/15) (Highways England, 2015).  The conversion equation is shown in Equation 1: 

 

 SR50 =
SR(v) ∗ (−0.0152 ∗ v2 + 4.77 ∗ v + 799)

1000
 Eq. 1 

 

where v is the testing speed, SR(v) is the SR at speed v, and SR50 is the values of SR(v) 

corrected to 50 km/h (30 mph). 
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Figure 3. RAVCON Software Layout 

 

 
Figure 4. SkidVid Software Layout 
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SCRIM coefficient (SC) values can be calculated by Equation 2: 

 

 SR =
SR(50) 

10
× 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑆𝐹𝐶 Eq. 2 

 

where SC is SR adjusted after any relevant corrections for load, speed, and temperature; the 

index of SFC (side friction coefficient) is 0.78 (Highways England, 2015). 

 

After a data quality check and the removal of invalid data, a dataset was created for 43 

centerline miles of US 29 in the Lynchburg District, 44 centerline miles of US 460 in the Salem 

District, and 13 centerline miles of US 11 in the Bristol District.  Data for US 58 and US 460 in 

the Bristol District were removed because of incompleteness and errors.  The common issues 

found with the SCRIM data were as follows: 

 

 Incomplete data: The number of records for each measure are very different.  For 

example, 125 records were available for alignment measures but more than 6,000 

records were available for other measures on US 460 in the Bristol District. 

 

 Invalid readings: Data are beyond the normal range for a variable.  For example, 

zeros for GPS readings or negative skid readings were identified as invalid readings. 

 

Crash Data 

 

To account properly for all the crashes to be considered in the study, the research team 

used a technical definition of RD crashes established by VDOT in 2015 (Kweon and Lim, 2019).  

SQL codes were developed to query the crash data subsystem of VDOT’s RNS (RNS_CRASH) 

database according to the flow diagram in Figure 5.  In general, the procedure identifies any 

crash that involves at least one vehicle leaving the travel lanes as a RD crash unless the crash 

occurred within 250 ft of an intersection.  Crashes that involved pedestrians were excluded from 

the analyses. 

 

Detailed crash records for RD crashes from 2014-2018 were retrieved.  The data were 

combined with roadway and traffic data from COTEDOP to create a dataset for statistical 

analysis.  The crash records included unique identification, crash types, severity, harmful event, 

geo-spatial information, route and milepost information, time and date, environmental variables, 

etc.  
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Figure 5. Flow Diagram for Identifying Roadway Departure Crashes (Kweon and Lim, 2019) 

 

Development of Composite Dataset 

 

This task combined RD crash data with COTEDOP, RNS, iVision, and SCRIM data to 

create the primary and secondary datasets for this study. 

 

Primary Dataset 

 

The RD crashes from RNS and the roadway and traffic data from COTEDOP were linked 

with unique route information and milepost.  RNS and COTEDOP are both Oracle databases. 

SQL codes were developed to merge the crash data with the roadway and traffic data.  This 

constituted the primary dataset for this study. 

 

Secondary Dataset 

 

RNS crash data were merged with iVision, SCRIM, and COTEDOP data to provide a 

secondary dataset for this study.  The purpose of this dataset was to explore the merits of 

collecting and archiving data for other variables—with potential for explaining RD crashes—that 

are not routinely collected or archived as part of current practice. 

 

As SCRIM data were available for only a few sections on US 11, US 29, US 460, crash, 

roadway geometry, and traffic data for these three routes were selected from the data processed 

in the previous task.  The iVision segment, with an average length of 0.1 miles, was selected as 
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the analysis unit for exploratory analysis.  Combining crash data with the other data was 

challenging as there were no common data fields among those databases and data were stored in 

different formats.  Although iVision, RNS, and COTEDOP data all had route information, they 

were coded in different formats.  The geo-spatial information was the key to combining the data, 

as shown in Figure 6.  Python scripts were developed to create the secondary dataset following 

three steps. 

 

First, the route information was extracted from COTEDOP roadway data and converted 

to the iVision route information format.  The iVision and COTEDOP roadways were merged 

based on route information and milepost.  This process removed the iVision segments that did 

not fit the scope of this study (rural two-lane and multi-lane highways) and added roadway and 

traffic information for the iVision segments left.  

 

Second, based on the SCRIM GPS data (aggregated at 10 m), iVision GPS, route, and 

milepost information, the combined iVision data created from the previous step were merged 

with SCRIM data. 

 

Third, route, direction, and milepost information in crash data were converted to the 

iVision format and then merged with combined data created from the second step.  

 

 
Figure 6. Data Structure for Secondary Dataset 

 

Data Analysis 

 

Standard and advanced statistical methods were used to examine correlations between 

RD crashes and relevant roadway, roadside, and traffic characteristics.  The data analysis 

included principal component analysis (PCA) to reduce dimensionality of the data; descriptive 

analysis of variables identified as potentially having the most influence on RD crashes; 

multinomial logit regression to estimate crash severity; and negative binomial (NB) and zero-

inflated Poisson (ZIP) regression models to estimate crash frequency. 
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The assembled data were split into nine groups depending on roadway type (two-lane, 

undivided multi-lane, or divided multi-lane) and geographical region (Northern, Eastern, or 

Western).  The three regions and their crash locations are shown in Figure 7.  Each region was 

deemed to have common geometric and driver behavior characteristics (Garber and Rivera, 

2010).  The northern region was composed of primarily urban and suburban counties near 

Washington, D.C.  The western region consisted of primarily rural roads that often were located 

in rolling or mountainous terrain; and the eastern region consisted of counties in the central and 

eastern parts of the state that were primarily flat and had a mixture of urban and rural counties.  

The specific districts and counties in each of the three regions can be found in Garber and Rivera 

(2010). 

 

The following sections describe the methodology and the characteristics related to the 

PCA, NB, multinomial logit, and ZIP models used in this study. 

 

 
Figure 7. Roadway Departure Crashes in the Three Analysis Regions 

 

Factors Involved in RD Crashes 

 

The primary dataset contained more than 100 variables with possibly complicated 

correlation patterns.  PCA was used to reduce the data to a smaller number of uncorrelated 

summary variables (principal components) that retained as much of the information in the dataset 

as possible.  The variance accounted for (VAF) by each component (eigenvalue), as well as the 

correlations between the variables and the principal components (loadings), were estimated using 

SPSS software.  A variable’s contribution to the total VAF is reflected in the sum of squared 

loadings (communality) across all principal components (Linting and Van der Kooij, 2012).  

There is no clear consensus regarding a good VAF threshold.  Linting and van der Kooij (2012) 

cited Comrey’s 1973 advice regarding VAF: 10% is poor, 20% is fair, 30% is good, 40% is very 

good, and 50% is excellent.  Based on this rule of thumb, a minimum VAF criterion of 35% was 

used in this study. 
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It is worth noting that standard PCA is based on a matrix of correlations between 

variables and generally requires interval data and assumptions of linearity between variables.  

Several of the variables in the dataset used for this study were categorical and therefore not well-

suited for standard linear PCA.  Therefore, categorical PCA (catPCA), a nonlinear alternative 

that assigns numerical quantifications to the categories of each variable through optimal scaling, 

was used (Gifi, 1990; Linting et al., 2007; Meulman et al., 2004).  Unlike PCA, which requires 

numeric variables, catPCA can simultaneously analyze numeric, ordinal, and nominal variables.  

In situations where all variables are numeric and relationships are linear, catPCA provides the 

same results as standard PCA. 

 

Nine separate catPCAs were performed using data for each roadway type (two-lane, 

undivided multi-lane, and divided multi-lane) and geographical region (northern, eastern, 

western) combination.  For each roadway type, variables that contributed substantially to the 

solution across all three regions (VAF > 0.35) were selected for further consideration as these 

variables were deemed the ones likely to have the most potential in explaining RD crashes. 

 

Characteristics of Influencing Variables 

 

Characteristics of variables identified through PCA as most likely to influence RD 

crashes were explored.  Crash data were divided into three groups based on severity: no injury 

(property damage only or no indication of injury); minor injury (possible or non-incapacitating 

injury); and severe injury (incapacitating or fatal injury).  Statistical tests were conducted to 

examine potential differences in how various factors might affect the severity of RD crashes.  

For categorical variables, the chi-square contingency test was used.  One-way analysis of 

variance was used for a three-way comparison of means of continuous data.  The Kruskal-Wallis 

test was used for three-way comparison of ordinal data. 

 

Factors Affecting Injury Severity 

 

A multinomial logit model was then formulated with injury severity level as the 

dependent variable.  The explanatory variables used were informed by the literature and the 

statistical analysis performed earlier.  The same three injury severity levels (no injury, minor 

injury, and severe injury) discussed in the previous section were considered. 

 

To begin, the likelihood that a RD crash will result in injury severity level j was 

expressed as the sum of a deterministic component and a random error component in accordance 

with Equation 3: 

 

 𝑈𝑗 = 𝛽′𝑋𝑗 + 𝜀𝑗 Eq. 3 

 

where 

 

Uj = likelihood of crash severity level j 

Xj = vector of measurable attributes of each crash severity level 

β = vector of coefficients of Xj 
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    εj = unobservable factors 

   β′Xj = deterministic component. 

 

The error term was assumed to follow an independent and identically distributed extreme value 

distribution.  The resulting probability of injury severity j, Pj is then given by Equation 4: 

 

 𝑃𝑗 =
𝑒𝛽′𝑋𝑗

∑ 𝑒𝛽′𝑋𝑗𝐽
𝑗=1

 Eq. 4 

 

where J is the total number of crash severity levels to be modeled. 

 

Crash severity level j was considered to be predicted if the calculated value of the 

severity likelihood function, and by extension the resulting probability, was a maximum among 

the severity levels being modeled (Peng et al., 2012). 

 

Model parameters were estimated using maximum likelihood methods, which are readily 

available in many software packages.  Emphasis was on identifying variables that may 

significantly influence the severity of RD crashes, rather than the overall predictive capability of 

the model.  Several functional forms of the regression model (Eq. 3) were tested.  Akaike’s 

information criterion (AIC), a goodness-of-fit measure derived from the log-likelihood of the 

fitted model, the number of predictors, and the number of levels of the dependent variable (crash 

severity), was used as the primary criterion for comparing models.  In comparing two models, 

the one with the smaller AIC is generally preferable (Cafiso et al., 2010). 

 

Factors Affecting Crash Frequency 

 

An NB model was formulated to investigate further the relationship between RD crash 

frequency and likely influencing variables derived from PCA.  The Poisson and NB models are 

the most common types of models used by safety analysts.  The NB model is especially pertinent 

to crash frequency variation, as crash data are often overdispersed, with sample variance 

exceeding the sample mean. 

 

The general form of the model adopted for this study is given in Equation 5: 

 

 𝐸(𝑌) = 𝑒𝛼0 ∙ 𝑛 ∙ 𝐿 ∙ 𝐴𝐷𝑇𝛼1 ∙ 𝑒∑ 𝛽𝑗𝑋𝑗
𝑚
𝑗=1  Eq. 5 

 

where  

 

E(Y) = expected RD crash frequency per year 

L = length of segment under consideration (mi) 

ADT = average daily traffic on the segment (veh/day) 

n = years of crash data 

Xj = any of m additional variables 

α0, α1, βj = model coefficients. 
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The form of the model specified in Equation 5 is widely accepted partly because it is 

intuitively appealing; in particular, it logically estimates zero crashes if one of the two exposure 

variables (ADT or L) equals zero (Cafiso et al., 2010; Peng et al., 2012).  As with the 

multinomial logit model discussed earlier, AIC was used as the primary criterion for comparing 

competing models, with preference given to models with low AIC values. 

 

Separate models of crash frequency and severity were developed for the three roadway 

types (two-lane, multi-lane divided, and multi-lane undivided).  For each roadway type, three 

segment location–based subgroups of data were considered for modeling: northern, eastern, and 

western regions. 

 

A likelihood ratio test was conducted to help assess the need (or otherwise) for a separate 

model for each subgroup or region (Behnood and Mannering, 2017).  The null hypothesis was 

that parameter estimates were similar between the different subgroups of data.  The test statistic 

was calculated from the log-likelihoods at convergence of models estimated using statewide data 

and region-specific data as given in Equation 6: 

 

 𝜒2 = −2 (𝐿𝐿(𝛽) − ∑ 𝐿𝐿(𝛽𝑘)

3

𝑘=1

) Eq. 6 

 

where 

 

 LL(β) = log-likelihood of model estimated with statewide data 

LL(βk) = log-likelihood of model estimated with data from region k (k = 1, 2, 3). 

 

The test statistic shown in Equation 6 is chi-square distributed with degrees of freedom 

equal to the difference between the total number of parameters estimated in the three subgroup 

models and the number of parameters estimated in the model using data from all regions.  The 

null hypothesis is rejected (and separate models deemed statistically warranted) if the right-tail 

probability of the calculated test statistic was less than a pre-specified significance level (e.g., 

5%). 

 

Impacts of Roadway Geometry and Pavement Condition 

  

The ZIP model is an alternative to the Poisson and NB models for modeling crash count 

data.  It is suitable for count data that have a much larger than expected number of zeros than 

assumed by the Poisson model (Hu et al., 2011).  This model was considered because the 

proportion of segments with zero RD crashes in the secondary dataset was approximately 74%.  

The ZIP model considers the possibility of a two-state process; one a near safe zero-crash state, 

and the other a normal count process (Poisson) with non-negative integers.  The model 

specification is shown in Equations 7 and 8: 

 𝐸(𝑌) = (1 − 𝜑)𝑒
∑ 𝛽𝑗𝑋𝑗

𝐽
𝑗=1  Eq. 7 
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where 

 

𝜑 =
𝑒∑ 𝛾𝑘𝑍𝑘

𝐾
𝑘=1

1 + 𝑒∑ 𝛾𝑘𝑍𝑘
𝐾
𝑘=1

 Eq. 8 

𝛽𝑗 = coefficient for count model covariate j (j = 1,…, J) 

𝑋𝑗 = count model covariate j 

𝛽𝑗 = coefficient for zero-inflation model covariate k (k = 1,…, K) 

𝑍𝑘 = zero-inflation model covariate k. 

 

 

RESULTS AND DISCUSSION 

 

Literature Review 

 

Understanding the impact of factors related to rural RD crashes in Virginia is very 

important for VDOT to implement countermeasures to reduce crash risk; however, because of 

the complexity of RD crashes, it is challenging to identify factors related to RD crashes and 

quantify their impacts on crash frequency and severity.  The studies in the literature analyzed 

various categories of factors such as roadway geometry, traffic characteristics, environmental 

conditions, pavement surface condition, driver behavior, and human factors (Al-Bdairi and 

Hernandez, 2017; Bahar, 2008; Eustace et al., 2016; Turochy and Ozelim, 2016).  Mixed logit 

models, nested logit models, multinomial logit models, and NB models are the most used models 

to examine RD crash severity and frequency (Al-Bdairi et al., 2018; Gong and Fan, 2017; Intini 

et al., 2019; Jurewicz and Ahmed, 2018). 

 

RD Crash Influencing Factors  

 

Well-studied RD crash influencing factors include roadway horizontal curves, 

lighting/environmental conditions, and human factors such as fatigue and alcohol/drug use. 

Horizontal curves are well recognized as an important factor for RD crashes on rural roads.  An 

FHWA (2016) study found that approximately three-fourths of curve-related fatal crashes 

involved single vehicles leaving the travel way and striking fixed objects or overturning.  Al-

Bdairi et al. (2018) used multinomial logit models, nested logit models, and mixed logit models 

to analyze RD crash severity involving large trucks and found that driver, traffic flow, roadway 

geometric features, land use, and time characteristics were the contributing factors to the severity 

level of these crashes.  The study also found a significant difference between lighted and dark 

conditions and that the level of severity outcomes was highly influenced by “several complex 

interactions between factors.”  Cicchino and Zuby (2017) aimed to “quantify the proportion of 

drivers involved in unintentional lane drift crashes who would be unable to regain control of 

their vehicles to inform the design of such systems.”  The results showed that 34% of drivers 

who crashed because they drifted from their lane were sleeping or incapacitated and 13% of 

these drivers had a medical issue, a blood alcohol concentration over the legal limit, or another 

factor that compromised vehicle control.  Also, when crashes involved serious/fatal injuries, 42% 

of drivers who drifted were sleeping or otherwise incapacitated.  Eustace et al. (2016) studied 

fatal and injury RD crashes in Ohio using 5 years of data.  The results showed that the following 



 

17 

 

were factors in increasing the severity or likelihood of run-off-road crashes: alcohol and drug 

use, curves/grades, female victims, overturn/rollover crashes, and run-off-road crashes on dry 

roadway surfaces.  Further, buses, trucks, and emergency vehicles that crashed on roads with a 

posted speed limit higher than 40 mph increased the probability of severity.  

 

Jalayer et al. (2016) found inattention/fatigue, avoiding something, and driving too fast 

were common reasons for a driver to leave a travel lane.  Roadway and roadside geometric 

design features play a significant role in whether or not human error results in a crash.  Gong and 

Fan (2017) studied rural RD crashes using a mixed logit model.  The likelihood ratio tests 

indicated that developing separate injury severity models for each age group was statistically 

superior to estimating a single model using all data.  The estimation results showed that the main 

contributing factor for injury severity varied over different age groups.  Inexperience, drug or 

alcohol involvement, use of a restraint device, and horizontal curves were found to affect the 

likelihood of crash injuries and fatalities in all age groups.  Reckless driving, speeding, 

distraction, being accompanied by others, and driving an SUV/van had a stronger influence on 

crash severity for younger/middle-aged drivers than for older drivers.  Truck drivers were less 

likely to have injuries in a large-sized vehicle than drivers in smaller vehicles.  Driving on a 

roadway segment with a lower AADT decreased the likelihood of fatal injury for young drivers.  

Bahar (2008) found that RD crashes mostly occurred on two-lane local highways and were 

overrepresented on horizontal curves.  Alcohol, fatigue, distraction, and speed were contributing 

factors.  Wang and Wang (2019) studied lane departure behavior using a simulator study.  The 

results showed that there were significant differences between lane departure behavior in the 

direction of centrifugal force and lane departure behavior against the direction of centrifugal 

force.  Radius, superelevation, and circular curve length of combined curves were significant 

variables affecting lane departure.  Also, the significant effects of geometric design 

characteristics on lane departure differed by type of combined curve.  

 

Intini et al. (2019) analyzed data taken from run-off-road single-vehicle crashes at rural 

two-lane road curves in Norway.  Logistic regression models were used, and their study found 

that driver familiarity was a factor associated with dangerous driving behavior such as speeding.  

Crashes involving unfamiliar drivers were associated with unexpected curves and a combination 

of horizontal and vertical road curvature.  Jurewicz and Ahmed (2018) used Poisson regression 

modeling to estimate run-off-road crash frequency.  The results showed that narrower hazard 

offsets increased the likelihood of run-off-road casualty crashes.  Tight road curvature was a 

strong and consistent predictor of run-off-road casualty crashes.  Freeman et al. (2016) found that 

RD crashes were often the result of poor driver performance leading up to the crash.  Turochy 

and Ozelim (2016) studied the effects of pavement widening, rumble strips, and rumble stripes 

on rural highways in Alabama and found that crash modification factors (CMFs) for two-lane 

roads for the combined effect of paved shoulder and shoulder rumble strips and stripes were 0.79 

and 0.82 (reduction in RD crashes of 21% and 18%).  Further, CMFs for the combined effect 

could be as low as 0.7 or as high as 0.81 within the confidence interval.  Kuehn et al. (2015) 

analyzed unintentional car RD crashes and found lane departure to the left happened more often 

than lane departure to the right.  This study also found driver health risks/issues were twice as 

prevalent as driver distractions.  The authors believed lane assist technology was a very 

important technology for reducing RD crashes. 
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Pavement friction was found to be linked to RD crashes, as an appropriate level of 

pavement friction is critical to ensure a vehicle remains in its lane (FHWA, 2019a; Najafi et al., 

2015).  Skid resistance significantly affects the safety of driving on pavements, especially in wet 

surface conditions (Mataei et al., 2016).  SCRIM road surveys are widely used in European 

countries to measure skid resistance and identify sites for safety investigation; however, safety 

analyses using combined SCRIM, roadway, and traffic characteristic data are still limited in the 

literature.  One study conducted in New Zealand found that curvature and skid resistance had 

strong effects on crashes, but pavement roughness had weaker effects (Cenek and Davies, 2004).  

But that study used simple analysis methods that could create substantial error for sites with 

fewer than 25 crashes.  It is challenging to quantify the impact of skid resistance on crash risk 

because the crash event is complicated and involves many factors and the level of skid resistance 

may vary by vehicle, even at the same location.  Studies from Australia found that changing the 

level of skid resistance can influence crash frequency and severity of wet weather skidding 

crashes and that the influence of skid resistance as a crash influencing factor decreased as the 

skid resistance increased (VicRoads, 2018).   

 

Countermeasures 

 

To reduce RD crashes, providing an opportunity to re-enter the travel way safely is a 

priority (Donnell et al., 2019).  Therefore, shoulder, safe pavement edges, and clear zones are 

recommended as effective countermeasures; countermeasures that keep a vehicle on the travel 

way and those that reduce crash severity are also recommended (Albin et al., 2016).  

 

AASHTO’s Highway Safety Manual (HSM) (2010), hereinafter “HSM 2010,” provides 

the following CMFS for RD crash countermeasures: 

 

 Widening lanes on rural two-lane roads and rural multi-lane highways reduces single-

vehicle run-off-road crashes and multiple-vehicle head-on, opposite-direction 

sideswipe, and same-direction sideswipe collisions.  The CMFs are presented in 

Tables 13-2, 13-3, and 13-4 of HSM 2010. 

 

 Widening paved shoulders on rural two-lane roads reduces single-vehicle run-off-

road crashes and multi-vehicle head-on, opposite-direction sideswipe, and same-

direction sideswipe collisions.  The CMFs are provided in Table 13-7 of HSM 2010. 

 

 Modifying shoulder types (paved, gravel, composite, turf) can affect single-vehicle 

run-off-road crashes on rural two-lane roads.  The CMFs are provided in Table 13-9 

of HSM 2010. 

 

 Changing barriers along embankments to less rigid types can reduce fatal and injury 

run-off-road crashes on rural two-lane roads, rural multi-lane highways, freeways, 

expressways, and urban/suburban arterials.  The CMFs are provided in Table 13-22 of 

HSM 2020. 
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 Installing continuous milled-in shoulder rumble strips on rural multi-lane divided 

highways with an AADT of 2,000 to 50,000 and rural freeways can reduce single-

vehicle run-off-road crashes.  The CMFs are provided in Tables 13-44 and 13-45 of 

HSM 2010. 

 

 Increasing the clear roadside recovery distance appears to reduce run-off-road 

crashes, but the effect is uncertain. 

 

 For rural two-lane roads, rural multi-lane highways, freeways, expressways, and 

urban and suburban arterials, installing roadside barriers along embankments appears 

to reduce the number of fatal and injury run-off-road crashes and the number of run-

off-road crashes of all severities.  However, the magnitude of the crash effect is not 

certain at this time. 

 

A review of the CMF Clearinghouse was conducted to identify countermeasures for RD 

crashes on rural two-lane and multi-lane highways.  The CMF Clearinghouse had more than 

1,000 CMFs related to RD crashes, and only those studies specified for RD crashes on rural non-

interstate highways and with a quality rating of 4 or 5 stars were reviewed.  The results are given 

in Table 1.  The CMFs applicable for “all types” of crashes were excluded to focus on RD 

crashes only. 

 

The installation of centerline rumble strips and shoulder rumble strips can reduce run-off-

road crashes; however, for some countermeasures, such as clear zone width and roadside 

barriers, CMFs are available, but the studies might lack reliability and applicability (ranked low 

in the CMF Clearinghouse).  

 

CMFs of 0.58 for run-off-road crashes and 0.60 for all crashes were reported with regard 

to installing a combination of chevron signs, curve warning signs, and/or sequential flashing 

beacons.  These values applied to principal arterials other than freeways and expressways, and 

the study area was not specified.  

 

For roadside treatments, CMFs for roadside barriers were found in the CMF 

Clearinghouse, but these studies were for freeways and expressways only.  For pavement friction 

improvements, the CMFs for RD crashes were 0.306 to 1.566 for all road functional classes. 

 

The CMF Clearinghouse included CMFs for countermeasures that typically comprised a 

physical change to the infrastructure.  Other types of countermeasures such as policy changes 

and education efforts were not included. 
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Table 1. Crash Modification Factors (CMFs) for Roadway Departure Crash Countermeasuresa, b 

 

Category 

 

Countermeasure 

 

CMF 

 

Crash Type 

Crash 

Severity 

 

CMF ID 

Alignment Flatten horizontal curve 0.216 Fixed-object, run-off-road All 9652 

Roadway Widen narrow pavement 0.643 Run-off-road All 6863 

Install centerline and shoulder 

rumble strips 

0.6 to 0.92 Run-off-road All 6852, 6939, 

6948, 6970, 

6973, 6974 

Install edge line rumble strips at 

horizontal curve 

0.71 to 0.78 Run-off-road All 9832, 9837, 

9839 

Install edge line rumble strips on 

roadways with a shoulder width of 

5 ft or greater 

0.34 to 0.57 Run-off-road K, A, B, C  3404, 3408 

Shoulder 

treatments 

Install a combination of shoulder 

rumble strips, shoulder widening 

(from 0 to 2 ft), and resurface 

pavement 

0 Head-on, run-off-road O 9007 

0 Head-on, run-off-road A, B, C, O 9010, 9012 

0 to 0.877 Head-on, run-off-road All 9013, 9100 

0.732 Head-on, run-off-road B, C 9093 

0.743 Head-on, run-off-road A, B, C 9096 

0.729 Head-on, run-off-road K, A, B, C 9098 

Install alternative audible lane 

departure warning treatments 

0.79 Head-on, run-off-road All 9685 

Install safety edge treatment 0.64 to 1, 0.79c Run-off-road All (Total of 36 

CMFs) 

0.769 to 1.036 Run-off-road K, A, B, C  4358, 4362, 

4364 

0.84 to 0.926 Run-off-road O 4375, 4379, 

4380, 4381, 

8663 

Install shoulder rumble strips 0.84,c 0.87 Run-off-road All 3442, 1195 

0.83c Run-off-road K, A, B, C 3447 

Install shoulder rumble strips and 

widen shoulder 

0.541 Run-off-road All 6667 

Install shoulder rumble strips on 

roadways with a shoulder width 

equal to 5 ft 

0.46 Run-off-road K, A, B, C  3627 

Pave shoulder 0.82 to 0.98 Fixed-object, head-on, 

run-off-road, sideswipe 

A, B, C  6690, 6744 

0.75 to 1.04 Fixed-object, head-on, 

run-off-road, sideswipe 

O 6691, 6745 

Widen shoulder 0.556 Run-off-road, single-

vehicle 

K, A, B, C  6658 

0.607 Run-off-road, single-

vehicle 

All 6659 

Delineation Install profiled thermoplastic 

pavement markings 

0.941 to 1.061 Run-off-road All 9800, 9806, 

9813 

Sign Install oversized chevron signs 1.061 Run-off-road All 8979 
a This table does not include the CMFs for interstates, freeways, and expressways; the CMFs with no specified 

roadway type are included.  
b The study area type is either rural or not specified.  

c VDOT-preferred CMFs. 

 

VDOT (n.d.) published the Virginia State Preferred CMF List that contains CMFs with 

high-quality ratings relevant to Virginia.  The Virginia State Preferred CMFs specified for run-

off-road crashes are included in Table 1.  A CMF of 0.79 for all run-off-road crash severities is 

recommended for adding Safety Edge on rural two-lane undivided highways; the CMF for 

adding shoulder rumble strips on rural non-freeway segments is 0.84 for property damage only 

run-off-road crashes and 0.83 for fatal and injury run-off-road crashes.  
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FHWA’s Strategic Approach and Plan for RD crashes includes strategies in three areas: 

keep vehicles on the roadway, provide for safety recovery, and reduce crash severity (FHWA, 

2020).  Table 2 provides a list of recommended countermeasures in each area. 

 

The effectiveness of countermeasures in each strategic area has been proven in previous 

studies.  High friction surface treatments were found to reduce total crashes by 24% and wet 

surface crashes by 52% (FHWA, 2019a).  Shoulder rumble strips were proven to reduce single-

vehicle run-off-road crashes by about 15% and single-vehicle run-off-road fatal and injury 

crashes by 29% (Torbic et al., 2017).  Installing centerline rumble strips can reduce total crashes 

by 9% and fatal and injury crashes by 12 % (Torbic et al., 2017).  Installing chevron signs on 

horizontal curves was found to reduce nighttime lane departure crashes by 25% and total crashes 

by 16%.  Regarding the countermeasures to provide safety recovery, Safety Edge was found to 

reduce fatal and injury crashes by 11% (FHWA, 2017a); increasing the clear zone was found to 

reduce total crashes by 22%, a change from 3.3 to 16.7 ft, and 44%, a change from 16.7 to 30 ft 

(FHWA, 2017b), but the effectiveness specified for RD crashes only was not available. 

 

 Albin et al. (2016) documented low-cost engineering countermeasures to improve safety 

on horizontal curves.  The information on design, cost, and application guidelines was provided 

to help agencies understand the available countermeasures and how to select and apply them.  

 

In NCHRP Synthesis 515, McGee (2018) found through a survey of 41 state departments 

of transportation that the RD crash countermeasures used by most were shoulder rumble strips, 

centerline rumble strips, flashing beacons on warning signs, tree removal, increased sight 

distance on curves, superelevation improvement, high friction surface treatment, and cable 

median barriers.  The survey also showed that the countermeasures especially effective for 

reducing RD crashes were as follows: 

 

 shoulder, edge line, and centerline rumble strips 

 safety edge 

 high friction surface treatment 

 cable median barrier 

 increasing the clear zone 

 flattening side slopes 

 increasing sight distance for curves. 

 
Table 2. FHWA Roadway Departure Crash Strategies and Countermeasures 

Countermeasures to Keep 

Vehicles on Roadway 

Countermeasures to Provide 

for Safety Recovery 

Countermeasures to Reduce 

Crash Severity 

 Pavement friction 

 Rumble strips 

 Horizontal curve safety 

 Nighttime visibility 

 Safety edge 

 Clear zones 

 Roadside and median barrier 
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Related VDOT Studies  

 

Several reports closely related to this study have been published by VTRC.  Garber and 

Kassebaum (2008) found that RD crashes were the predominant type of crashes followed by 

rear-end, angle, and deer crashes on two-lane highways in Virginia.  One of the main 

recommendations was to improve/fix geometric deficiencies of causal factors at RD crash 

incident locations.  Kweon and Lim (2019) developed RD SPFs for 16 types of sites including 

rural two-lane and multi-lane highways.  Variables used in the SPFs were as follows: 

 

 Rural two-lane highway: AADT, lane width, shoulder width, median shoulder width, 

pavement roughness value, pavement condition, surface type, curb gutter, and 

segment length 

 

 Rural multi-lane undivided highway: AADT, shoulder width, segment length 

 

 Rural multi-lane divided highway: AADT, lane width, shoulder width, median 

shoulder width, pavement roughness value, pavement condition, surface type, curb 

gutter, and segment length. 

 

VDOT’s RD crash decision tree tool uses detailed crash records exported from the 

VDOT TED’s Tableau crash tool and additional roadway characteristics data to identify the best 

countermeasure (VDOT, 2016).  This tool includes pavement type and conditions (good or poor) 

as input but does not include IRI or skid resistance measures.   

 

 

Data Summary 

 

This section presents crash and roadway characteristics from the primary and secondary 

datasets.  The summary and descriptive statistics of key study variables are also provided. 

 

Primary Dataset 

 

The primary dataset used for this study was obtained by merging data from two VDOT 

databases: (1) crash records from the RNSCRASH database, and (2) locational, geometric, and 

AADT data from the COTEDOP database.  The dataset included 48,340 RD crashes on 56,443 

roadway segments (totaling 35,243 miles of roadway) from 2014-2018. 

 

Table 3 summarizes the relative distribution of segments over the three geographical 

regions of the state—northern, western, and eastern—each of which was deemed to have 

common geometric and driver behavior characteristics (Garber and Rivera, 2010).  A majority of 

segments (58.5% of the total mileage) were in the western part of the state.  Approximately 31% 

of the total mileage was in the eastern region, and the remaining 10.5% was in the northern part 

of the state.   
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Table 3. Summary of Study Segments 

 

Region 

 

Roadway Type 

Number of 

Segments 

Length 

(mi) 

Total Travel 

(106 veh-mi) 

 Northern 

  

  

  

Two-Lane 5,314  2,869  8,385  

Multi-Lane, Divided 499  203  6,073  

Multi-Lane, Undivided 103  24  332  

All Types 5,916  3,096  14,790  

Western 

  

  

  

Two-Lane 30,711  20,149  29,395  

Multi-Lane, Divided 1,941  856  14,876  

Multi-Lane, Undivided 339  117  1,033  

All Types 32,991  21,121  45,305  

Eastern 

  

  

  

Two-Lane 16,176  10,384  14,863  

Multi-Lane, Divided 1,119  533  10,998  

Multi-Lane, Undivided 241  108  1,557  

All Types 17,536  11,025  27,418  

All Regions 

  

  

Two-Lane 52,201  33,401  52,644  

Multi-Lane, Divided 3,559  1,592  31,947  

Multi-Lane, Undivided 683  249  2,922  

All Types 56,443  35,243  87,513  

 

Also shown in Table 3 is total travel (in million vehicle-miles) on study segments during 

the 5-year analysis period.  Relative to its percentage of the total mileage (10.5%), the northern 

region had a disproportionately high percentage (17%) of the total travel during the 5-year 

analysis period, which was not surprising.  Conversely, the western region had a 

disproportionately lower percentage of travel (52%) relative to its percentage of the total mileage 

(58.5%).  The proportions of roadway mileage and the amount of travel were similar, at 

approximately 31%, for the eastern region. 

 

Table 4 shows the distribution of crashes by roadway type and geographical region.  For 

the segments in this study, a majority of RD crashes (approximately 60%) occurred in the 

western part of the state.  The lowest percentage (approximately 13%) was recorded in the 

northern region, and the remaining 27% was in the eastern region.  The table also shows that a 

majority of crashes were non-injury crashes, with fatal and injury crashes constituting 

approximately 43% of the total number of RD crashes during the analysis period.  The number of 

RD crashes that resulted in an injury or a fatality ranged from 40% to 50% across all regions and 

roadway types. 

 

Approximately 52% of all crashes occurred on a tangent (or straight) section (see Table 

5).  Proportionally more crashes occurred on tangents than on horizontal curves for all roadway 

types and regions except for two-lane roadway segments in the western part of the state where 

approximately 57% of crashes were on horizontal curves.  Overall, approximately 53% of all RD 

crashes on two-lane roadway segments occurred on a horizontal curve.  The relative distribution 

of fatal and injury crashes among the various roadway type and region combinations was 

generally similar to the relative distribution of total RD crashes.  Approximately 54% of all fatal 

and injury crashes on two-lane segments were on a horizontal curve. 
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Table 4. Summary Characteristics of Roadway Departure Crash Data 

 

Region 

 

Roadway Type 

Fatal and Injury Crashes All Crash Severities 

Count Percentagea Count Percentageb 

 Northern 

  

  

  

Two-Lane 2,143  40.4 5,299  13.2 

Multi-Lane, Divided 461  43.1 1,069  14.3 

Multi-Lane, Undivided 22  50.0 44  5.6 

All Types 2,626  41.0 6,412  13.3 

Western 

  

  

  

Two-Lane 10,527  43.4 24,280  60.6 

Multi-Lane, Divided 1,856  42.8 4,334  57.8 

Multi-Lane, Undivided 185  47.6 389  49.5 

All Types 12,568  43.3 29,003  60.0 

Eastern 

  

  

  

Two-Lane 4,502  43.0 10,475  26.2 

Multi-Lane, Divided 873  41.6 2,097  28.0 

Multi-Lane, Undivided 148  41.9 353  44.9 

All Types 5,523  42.7 12,925  26.7 

All Regions 

  

  

Two-Lane 17,172  42.9 40,054    

Multi-Lane, Divided 3,190  42.5 7,500    

Multi-Lane, Undivided 355  45.2 786    

All Types 20,717  42.9 48,340    
a Percentage of total crashes (all severities) for applicable region and roadway type. 
b Percentage of applicable statewide crash count totals. 

 
Table 5. Roadway Departure Crashes on Tangent Sections 

 

Region 

 

Roadway Type 

Fatal and Injury Crashes All Crash Severities 

Count Percentagea Count Percentagea 

 Northern 

  

  

  

Two-Lane 1,091  50.9 2,778  52.4 

Multi-Lane, Divided 377  81.7 877  82.1 

Multi-Lane, Undivided 19  86.4 39  88.6 

All Types 1,487  56.6 3,694  57.6 

Western 

  

  

  

Two-Lane 4,473  42.5 10,441  43.0 

Multi-Lane, Divided 1,252  67.4 2,951  68.1 

Multi-Lane, Undivided 174  93.9 355  91.2 

All Types 5,807  46.2 13,560  46.8 

Eastern 

  

  

  

Two-Lane 2,383  52.9 5,735  54.7 

Multi-Lane, Divided 697  79.8 1,701  81.1 

Multi-Lane, Undivided 139  93.9 322  91.2 

All Types 3,219  58.3 7,758  60.0 

All Regions  

  

Two-Lane 7,946  46.3 18,954  47.3 

Multi-Lane, Divided 2,326  72.9 5,530  73.7 

Multi-Lane, Undivided 241  67.9 530  67.4 

All Types 10,512 50.7 25,012 51.7 
a Percentage of applicable region and roadway type crash count. 

 

A breakdown of crash counts by year is provided in Table 6.  With the exception of the 

year 2018 where RD crashes were slightly elevated—between 6% and 9% more crashes than the 

previous 4-year average—in each of the three regions, there was a general downward trend in 

crashes.   

 

Also shown in Table 6 is an estimate of the average crash rate for each roadway type and 

region combination for the entire study period.  Crash rates were calculated as the ratio of total 

crashes to total vehicle-miles traveled (see Tables 4 and 5).  It may be seen that the highest rates 
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were for two-lane roadways.  RD crash rates were comparable for divided and undivided multi-

lane lane study segments for the 5-year analysis period.  The western region had crash rates 

higher than the statewide average for all roadway types. 

 
Table 6. Trends in Roadway Departure Crashes 

 

 

Region 

 

 

Roadway Type 

Crash Count Crash Rate 

(per 106 

veh-mi)a 

 

2014 

 

2015 

 

2016 

 

2017 

 

2018 

 Northern 

  

  

  

Two-Lane 1,065  1,101  990  987  1,156  0.63 

Multi-Lane, Divided 231  239  220  178  201  0.18 

Multi-Lane, Undivided  9  8   9   8    10  0.13 

All Types 1,305  1,348  1,219  1,173  1,367  0.43 

Western 

  

  

  

Two-Lane 4,824  4,908  4,815  4,731  5,002  0.83 

Multi-Lane, Divided 877  784  785  893  995  0.29 

Multi-Lane, Undivided 80  68  81  84  76  0.38 

All Types 5,781  5,760  5,681  5,708  6,073  0.64 

Eastern 

  

  

  

Two-Lane 2,023  2,157  2,015  2,023  2,257  0.70 

Multi-Lane, Divided 395  409  461  397  435  0.19 

Multi-Lane, Undivided 47  67  74  86  79  0.23 

All Types 2,465  2,633  2,550  2,506  2,771  0.47 

All 

Regions  

  

Two-Lane 7,912  8,166  7,820  7,741  8,415  0.76 

Multi-Lane, Divided 1,503  1,432  1,466  1,468  1,631  0.23 

Multi-Lane, Undivided 136  143  164  178  165  0.27 

All Types 9,551 9,741 9,450 9,387 10,211 0.55 
a Average over all years (2014-2018) and study segments. 

 

Secondary Dataset 

 

The secondary dataset for this study was constructed with the COTEDOP, RNS, iVision, 

and SCRIM data.  The purpose of this dataset was to explore potential impacts of roadway 

geometry and pavement (including shoulder) condition on RD crash frequency.  Table 7 provides 

summary characteristics of salient variables in the secondary dataset.  These variables were later 

considered in RD crash frequency model specifications. 

 

After invalid and incomplete readings were removed, the SCRIM data were available 

only for limited segments on US 29 in the Lynchburg District, US 460 in the Salem District, and 

US 11 in the Bristol District.  All segments on US 11 were excluded during data conflation as 

they were not on the selected COTEDOP segments.  Even though a majority of iVision segments 

were approximately 0.1 mile long, there were some shorter segments.  Segments that were less 

than 0.02 mile long were excluded from this study; this ensured that each segment had a 

minimum of three SCRIM measurements.  In addition, segments were excluded from analysis if 

they had received significant maintenance (rehabilitation) in any of the years from 2014-2018, 

for which crash data were used.  

 

The final dataset included 903 iVision segments on US 29 in the Lynchburg District and 

US 460 in the Salem District.  The total length was 86 miles (two-direction total).  There were 

364 RD crashes during the 5-year analysis period; 211 (58%) were on dry pavement, and 114 

(31%) were on wet pavement.  Approximately 29% of all crashes were in the Salem District. 
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Table 7. Salient Variables in Secondary Dataset 

Variable Mean Min. Max. 

Exposure  

Segment length (mi) 0.09 0.02 0.10 

Average daily traffic (veh/day) 6773 3722 8422 

Roadway Geometry  

Average gradient within segment (%) 0.02 -22.48 6.83 

Average of absolute gradient values within segment (%) 2.44 0.08 6.83 

Minimum gradient within segment (%) -0.78 -7.36 6.63 

Maximum gradient within segment (%) 0.86 -6.46 7.67 

Maximum of absolute gradient values within segment (%) 3.16 0.14 7.67 

Average cross slope within segment (%) -1.53 -11.30 26.04 

Average of absolute slope values within segment (%) 3.02 0.19 11.30 

Minimum cross slope within segment (%) -3.08 -13.59 9.51 

Maximum cross slope within segment (%) -0.04 -10.70 11.41 

Maximum of absolute cross slope values within segment (%) 4.31 0.27 13.59 

Average curvature within segment (1/mi) -0.02 -6.64 15.21 

Average of absolute curvature values within segment (1/mi) 1.15 0.16 7.07 

Minimum curvature within segment (1/mi) -1.02 -16.25 4.67 

Maximum curvature within segment (1/mi) 0.96 -4.35 10.46 

Maximum of absolute curvature values within segment (1/mi) 2.00 0.16 16.25 

Lane width (ft) 10.99 9.60 12.40 

Right shoulder width (ft) 1.74 0 8 

Roadside/Shoulder Condition  

Right shoulder is paved (1 = paved) 0.75 0 1 

Right shoulder is not paved (1 = not paved) 0.21 0 1 

Left shoulder is paved (1 = paved) 0.25 0 1 

Left shoulder is not paved (1 = not paved) 0.61 0 1 

Proportion of right shoulder material in relatively good condition 0.63 0.00 1.00 

Proportion of right shoulder material in fair condition 0.08 0.00 1.00 

Proportion of right shoulder with vegetation growth or debris build-up 0.00 0.00 0.87 

Proportion of shoulder experiencing a drop-off greater than 3 in 0.00 0.00 0.07 

Proportion of shoulder experiencing a drop-off between 1.5 in and 3 in 0.03 0.00 1.00 

Proportion of shoulder experiencing a drop-off greater than 1.5 in 0.14 0.00 1.00 

Proportion of right shoulder in relatively good or fair condition 0.71 0.00 1.00 

Proportion of left shoulder material in relatively good condition 0.23 0.00 1.00 

Proportion of left shoulder with vegetation growth or debris build-up 0.02 0.00 1.00 

Roadway Surface Condition  

Skid resistance / SCRIM coefficient 63.03 9.64 87.37 

Mean profile depth (x 0.0394 in) 0.73 0.25 1.71 

Pavement roughness (in/mi) 81.65 38 255 

Operational Variables 

Speed limit (mph) 58.57 40 65 

Change in speed limit from adjacent segment (mph) 0.23 0 15 

Crash Counts  

All crashes / 5 years (2014-2018) 0.40 0 11 

Dry-pavement crashes / 5 years (2014-2018) 0.23 0 4 

Wet-pavement crashes  / 5 years (2014-2018) 0.13 0 11 
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The SCRIM surveys for US 460 and US 29 were conducted in 2018 and 2019, 

respectively.  The SCRIM data for these 2 years were combined into a small dataset to explore 

the pavement condition variables before further modeling with the secondary data.  The skid 

resistance indicator (SC) and pavement macrotexture indicator (MPD) are compared in Figure 8; 

the wet condition crash rate per million vehicle-miles and the wet condition crash ratio (total wet 

condition crashes / total crashes in wet and dry conditions) are also plotted.  The wet condition 

crash ratio is used to identify elevated wet condition crash locations, and segments with a ratio 

greater than a threshold value (usually between 0.25 and 0.5) need to be investigated (FHWA, 

2010; Najafi, Flintsch, and Medina, 2017).  Although the average wet condition crash ratio 

varied by facility type, the average SC was not very different across facility type and road.  All 

SC readings were grouped to represent three different levels of skid resistance. 

 

Figure 9 shows that the wet crash rate per million vehicle-miles decreased as skid 

resistance increased from SC Level 1 (SC < 0.4) to Level 2 (SC between 0.4 and 0.5) as 

expected.  From SC Level 2 to Level 3, the level of skid resistance increased and the crash rate 

slightly increased for the segments on US 460.  This might be because the influence of skid 

resistance on crashes decreases as skid resistance increases (VicRoads, 2018). 

 

 
Figure 8. SCRIM Coefficients: Average Mean Profile Depth (MPD), Average Wet Condition Crash Ratios, 

and Average Rate of Wet Condition Crashes by Route and Facility Type.  Facility type: 1 = divided, no access 

control; 2 = divided, partial access control; 3 = divided, full access control. 
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Figure 9. Wet Condition Crash Ratio by SCRIM Coefficient (SC) Level.  SC levels are defined as 1 = SC < 

0.4; 2 = 0.4 ≤ SC < 0.5; 3= SC ≥ 0.5.   

 

Data Analysis 

Factors Involved in RD Crashes 

 

This section provides information regarding the analysis of the primary dataset for a 

general overview of factors that might influence RD crashes.  Nonlinear principal components 

analysis was undertaken to reduce dimensionality in the dataset and to identify variables that 

might be involved in RD crashes. 

 

The data were split into nine groups depending on roadway type (two-lane, undivided 

multi-lane, divided multi-lane) and region (northern, eastern, western).  Separate analyses were 

performed using data from each group.  All analyses were done using the program CATPCA 

from the “Categories” module in SPSS.  In each case, a five- or six-dimension solution was 

found to explain between 57% and 86% of the variance in the respective datasets.  A summary of 

the results showing variable contributions for the “most important” variables identified through 

PCA is shown in Table 8.  Variables that contributed substantially (VAF > 0.35) to the solution 

across all nine data groups were considered “important” and selected for further consideration. 

 

Table 9 provides descriptive statistics and analysis of the 10 variables identified through 

PCA.  Statistical tests were conducted to examine potential differences in how these variables 

might affect the severity of RD crashes.  The results suggested a statistically significant 
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association between roadway functional class, speed limit, shoulder width, pavement roughness, 

traffic control, weather, roadway surface condition, and crash severity.  However, there were no 

statistically significant differences in AADT, median width, and the presence (or absence) of a 

curb among the three severity groups.  Although studies in the literature found that traffic 

volume was associated with severity outcomes, some found that roads with lower AADTs 

decreased the likelihood of fatal crashes for young drivers, and others found that injury severity 

was high during dark hours although the traffic volume was low (Al-Bdairi et al., 2018; Eustace 

et al., 2016; Gong and Fan, 2017).   

 

Crashes in wintry conditions tended to result in non-injury outcomes rather than injury 

outcomes.  A plausible explanation is that drivers may exercise more caution when driving in 

wintry conditions and travel at lower speeds.  A similar observation pertained to crash outcomes 

in rainy conditions.  In addition, approximately 47% of all crashes occurred on segments with 

marked traffic lanes (as opposed to other traffic control types).  These crashes tended to result in 

minor or no injury outcomes rather than severe injuries. 

 

RD crashes on minor arterials tended to result in severe injury outcomes rather than non-

injury outcomes whereas the converse was true for crashes on local roadway segments.  A 

plausible reason for this could be a general difference in speed limits on the two facility types.  

This seems consistent with the observation that the speed limit was on average higher in the 

severe crash outcome group than the non-injury outcome group.  Similarly, general differences 

in characteristics of different roadway functional groups may partly explain the observation that 

there were more severe injury than non-injury crashes on segments with wider shoulders (6 to 9 

ft) whereas the opposite was true on segments with narrower shoulders (1 to 3 ft). 

 

Factors Affecting Injury Severity 

 

This section presents the statistical analysis results for evaluating the relationship 

between RD crash severity and various risk factors.  A multinomial logit model was used to 

investigate the potential impact of the roadway and its environment on crash severity.  Three 

injury severity levels (no injury, minor injury, and severe injury) were considered.  For model 

calibration, “no injury” was set as the base scenario with all of its coefficients set equal to zero.  

The explanatory variables considered for model development (based on the results of the PCA) 

are shown in Table 10.   

 

All variables shown in Table 10 were used for initial model development.  However, only 

those variables that were significant at the 5% level were retained in the final model.  Models 

were estimated using the statistical software SAS.  Tables 11 and 12 show summary results for 

two-lane roadways and divided multi-lane roadways.  The concordance statistic (Hand and Till, 

2001), an R-square-like measure used for logistic regression, suggested fairly weak predictive 

ability; nevertheless, the likelihood ratio chi-square statistic indicated good model fit overall (p-

value ≈ 0).
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Table 8. Variable Contributiona to Nonlinear Principal Component Analysis Solution 

  

Variable 

Two-Lane Roadways Multi-Lane, Undivided Roadways Multi-Lane, Divided Roadways 

Northern Western Eastern Northern Western Eastern Northern Western Eastern 

Functional class 0.802 0.830 0.779 0.912 0.725 0.768 0.585 0.842 0.367 

Speed limit 0.605 0.599 0.658 0.937 0.660 0.543 0.641 0.440 0.605 

Annual average daily traffic 0.703 0.713 0.762 0.948 0.640 0.837 0.750 0.421 0.522 

Average shoulder width 0.494 0.393 0.417 0.834 0.915 0.867 0.820 0.507 0.844 

Average median width N/A N/A N/A N/A N/A N/A 0.871 0.731 0.638 

Curb or gutter 0.780 0.840 0.795 0.947 0.896 0.890 0.856 0.997 0.870 

Traffic control 0.910 0.599 0.799 0.825 0.864 0.735 0.944 0.821 0.880 

Pavement roughness 0.809 0.840 0.791 0.964 0.708 0.842 0.938 0.444 0.637 

Weather condition 0.815 0.846 0.845 0.970 0.817 0.888 0.838 0.866 0.871 

Road surface condition 0.851 0.864 0.874 0.868 0.834 0.908 0.891 0.881 0.890 

Number of components 6 6 6 5 6 6 6 6 6 

Variance-accounted-for 68.5% 65.1% 69.0% 86.1% 74.6% 77.5% 70.0% 57.2% 58.3% 

N/A = not applicable. 
a Total variance accounted for (sum of communalities) across all components.  
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Table 9. Characteristics of Potential Influencing Variables 

 

 

Variable 

Injury Severity Level (% Crashes in Each Category) 

No Injury (N = 

7,623) 

Minor Injury (N = 

13,831) 

Severe Injury (N = 

6,886) 

All Crashes (N = 

48,340) 

Roadway Functional Class*  

Other principal arterial 16.3 16.3 16.6 16.4 

Minor arterial* 18.4 19.3 22.1 19.2 

Major collector 31.5 32.1 30.8 31.5 

Minor collector* 12.5 12.2 11.4 12.3 

Local* 21.3 20.1 19.0 20.7 

Average Annual Daily 

Traffica 

4,071 4,187 4,079 4,105 

Speed Limit (mph)a* 48.4 48.8 49.6 48.7 

Shoulder Width (ft)*  

0 to 1 1.0 1.0 0.9 1.0 

1 to 3* 23.7 23.0 20.1 23.0 

3 to 6 47.6 48.0 47.5 47.7 

6 to 9* 23.5 23.7 27.6 24.1 

Greater than 9 4.2 4.4 3.9 4.2 

Median Widtha,b 54.6 56.6 57.0 55.5 

Curb or Gutter 

Absent 99.5 99.5 99.4 99.5 

Present 0.5 0.5 0.6 0.5 

Pavement Roughness (in/mi)*  

 Less than 95 (or 

Good)* 

81.1 79.7 78.4 80.3 

 95 to 170 (or Fair)* 18.3 19.6 21.0 19.0 

Greater than 170 (or 

Poor) 

0.6 0.7 0.6 0.6 

Traffic Control  

No traffic control* 25.8 24.3 21.9 24.8 

Slow or warning sign 1.9 2.0 1.8 1.9 

Traffic lanes marked* 47.6 46.7 45.6 47.0 

No passing lanes* 24.7 27.0 30.6 26.2 

Weather Condition 

No adverse condition* 70.1 75.9 83.8 73.7 

Fog or mist* 3.9 3.9 3.1 3.8 

Rain* 16.6 14.3 10.6 15.1 

Snow, sleet, or hail* 9.4 5.8 2.5 7.4 

Roadway Surface Condition  

Dry* 64.4 70.0 79.2 68.1 

Wet* 22.4 20.8 16.3 21.1 

Wintry* 12.7 8.6 4.0 10.3 

Debris 0.6 0.6 0.5 0.6 
* Significant difference (at the 0.05 level) between groups.  
a These entries represent mean values (not percentages). 
b Divided multi-lane roadways only. 
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Table 10. Definitions and Summary Characteristics of Explanatory Variables Used in Logit Model 

Variable Mean Min. Max. 

Average shoulder width (ft) 4.31 0 33 

Speed limit (mi/h) 48.80 15 70 

Pavement roughness (in/mi) 40.44 0 272 

Curb (1 if no curb or gutter; 0 otherwise) 0.99 0 1 

Traffic control (1 if traffic lanes marked; 0 otherwise) 0.47 0 1 

Wintry condition (1 if Yes; 0 if No) 0.10 0 1 

Average median width (ft)a 57.25 2 249 
a Divided multi-lane roadways only. 

 

No statistically meaningful results were obtained using data for undivided multi-lane 

roadways at a regional analysis level because of the lack of an adequate sample size.  For 

example, there were only 42 valid observations in the attempt to calibrate a model for the eastern 

region.  Less than 2% of all crashes were on undivided multi-lane segments.  Analysis using 

statewide data was not particularly informative either as the only statistically significant variable 

was “wintry condition” (odds ratio 0.117; CI [0.028, 0.485]). 

 

For two-lane roadways, the results indicated that shoulder width, speed limit, lane 

marking, and wintry conditions are significantly associated with injury severity.  The positive 

signs for shoulder width and speed limit indicated that as their values increased, the likelihood 

for injury outcomes also increased.  RD crash frequency analysis performed later in the study 

found that crash frequency decreased as shoulder width increased.  That is, although wider 

shoulders may reduce the likelihood for a RD crash, the outcome may be severe once the crash 

occurs.  These may suggest possible correlations with other factors such as (higher) operating 

speed, speed limit, and lane width (Boodlal et al., 2015).  Figure 10 shows the relationships 

among RD crash frequency, average shoulder width, and speed limit on two-lane roadway 

segments.   

 
Figure 10. Relationships Among Speed, Shoulder Width, and Roadway Departure Crash Frequency 
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It may be seen that total crash frequency was highest on segments for which the average 

shoulder width was less than 3 ft and decreased as shoulder width increased.  However, there 

was a general increase in severe injury crashes as shoulder width increased on segments with 

speed limits greater than 45 mph.  Although the increase in severe injury crashes was statistically 

significant, the magnitude of the increase appears practically marginal and unlikely to offset the 

overall RD crash reduction benefits associated with a wider shoulder.  The effect of shoulder 

width on injury severity was not significant in the northern and eastern parts of the state. 

 

The negative values for marked traffic lanes and wintry conditions (Table 11) suggest 

that the likelihood of injury is decreased with those conditions.  The effect of lane markings on 

injury severity was not statistically significant in the eastern region.  These differences may be a 

reflection of general differences in roadway and driver behavior characteristics between the 

analysis regions (Garber and Rivera, 2010). 

 

In addition to the four variables identified for two-lane roadways, average median width 

was found to be associated with RD crash severity on divided multi-lane roadways (Table 12).   

The likelihood ratio test was used to test for similarity in parameter values based on using the 

entire dataset (for a given roadway type) vs. data for the different subgroups or regions.  The null 

hypothesis of similar parameter values was rejected with high confidence (over 99.99%), 

suggesting that the estimation of separate models for the regional subgroups was statistically 

warranted (Behnood and Mannering, 2017). 

 

Factors Affecting Crash Frequency 

 

An NB regression model was used to investigate further factors significantly associated 

with RD crash frequency.  SAS software was used to model RD crash frequency as a function of 

roadway characteristics.  A subset of the variables from Table 7 (shoulder width, speed limit, 

pavement roughness, curb, and median width) were used as explanatory variables.  These were 

supplemented by the exposure variables: ADT in vehicles per day (mean of 1,731, minimum of 

50, maximum of 53,584), segment length in miles (mean of 0.64, minimum of 0.10, maximum of 

10.35), and the number of years of crash data (n = 5 years).  The analysis was restricted to 

roadway segments that were continuously present in the COTEDOP database for the 5-year 

analysis period from 2014-2018.  A total of 50,656 segments were used. 

 

All variables were used for model development; however, only those that were 

significant at the 5% level were included in the final model.  Summaries of the modeling results 

are provided in Tables 13 through 15.  Performance of the models was assessed by comparing 

the sample probability distribution (relative frequencies) of the data to the average probability 

distributions predicted using the estimated models across the full range of crash counts in the 

data (Hilbe, 2014).  In general, the models appear to underestimate the proportion of zero crash 

counts but perform well predicting the non-zero crashes. 
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Table 11. Logit Model Results of Roadway Departure Crash Severity for Two-Lane Roadways 

 

Variable 

Estimate (Standard Error)a 

Northern Region Western Region Eastern Region Statewide 

Intercept [Severe] -2.8984 (0.3453) -2.5662 (0.1458) -2.4392 (0.2450) -2.5764 (0.1158) 

Intercept [Minor] -1.1812 (0.2353) -0.8455 (0.1033) -1.3101 (0.1925) -0.9833 (0.0838) 

Average shoulder width (ft) [Severe]   0.0541 (0.0154)   0.0416 (0.0113) 

Average shoulder width (ft) [Minor]  0.0026 (0.0120)*  0.0051 (0.0088)* 

Speed limit (mi/h) [Severe] 0.0335 (0.0076) 0.0247 (0.0031) 0.0261 (0.0051) 0.0257 (0.0026) 

Speed limit (mi/h) [Minor] 0.0107 (0.0053) 0.0063 (0.0023) 0.0132 (0.0041) 0.0083 (0.0019) 

Marked traffic lanes (1 if Yes; 0 otherwise) [Severe] -0.2114 (0.0994) -0.2789 (0.0538)   -0.2041 (0.0386) 

Marked traffic lanes (1 if Yes; 0 otherwise) [Minor] 0.0438 (0.0721)*  -0.1642 (0.0403)   -0.1156 (0.0294) 

Wintry condition (1 if Yes; 0 if No) [Severe] -1.3460 (0.2300) -1.1796 (0.1166) -1.0268 (0.1603) -1.1672 (0.0871) 

Wintry condition (1 if Yes; 0 if No) [Minor] -0.6229 (0.1187) -0.3270 (0.0629) -0.5054 (0.1061) -0.4167 (0.0491) 

          

Model Statistics 

Number of observations 4,482  14,520  5,966  24,968  

Likelihood ratio chi-square 89.56 270.49 89.04 444.20 

Degrees of freedom 6 8 4 8 

Concordance statistic (AUC) 0.554 0.555 0.543 0.551 

Akaike information criterion (AIC) 8,152  27,695  11,420  47,290  
a Parameter defined for “severe injury” [Severe]; “minor injury” [Minor]. 

*Not significant at the 5% significance level. 
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Table 12. Logit Model Results of Roadway Departure Crash Severity for Divided Multi-Lane Roadways 

  

Variable 

Estimate (Standard Error)a 

Northern Region Western Region Eastern Region Statewide 

Intercept [Severe] -1.9901(0.2819)  -1.8663 (0.2063)  -2.8326 (0.9588) -1.8458 (0.1625) 

Intercept [Minor] -0.5696 (0.1786)  -0.7210(0.1282)  -3.5370 (0.8048) -0.7511 (0.1044)  

Average shoulder width (ft) [Severe] 0.0921 (0.0364)   -0.1391 (0.0421)   

Average shoulder width (ft) [Minor] 0.0034 (0.0243)*  -0.0655 (0.0352)*  

Speed limit (mi/h) [Severe]     0.0463 (0.0178)   

Speed limit (mi/h) [Minor]     0.0571 (0.0147)   

Marked traffic lanes (1 if Yes; 0 otherwise) [Severe]   0.6022 (0.2112)   0.5451 (0.1592) 

Marked traffic lanes (1 if Yes; 0 otherwise) [Minor]  0.1065 (0.1325)*  0.0339 (0.1011)* 

Wintry condition (1 if Yes; 0 if No) [Severe] -1.7592 (0.4686) -1.3301 (0.2123) -1.7268 (0.3486) -1.4939 (0.1688) 

Wintry condition (1 if Yes; 0 if No) [Minor] -0.5724 (0.2086) -0.5424 (0.1157) -0.4283 (0.1687) -0.5068 (0.0863) 

Average median width (ft) [Severe]    0.0009 (0.0008)* 

Average median width (ft) [Minor]   
 

  0.0013 (0.0006) 

          

Model Statistics  

Number of observations 1,069  4,334  2,054  7,500  

Likelihood ratio chi-square 32.48 76.48 68.42 150.55 

Degrees of freedom 4 4 6 6 

Concordance statistic (AUC) 0.559 0.531 0.561 0.541 

Akaike information criterion (AIC) 2,000  8,197  3,871  14,157  
a Parameter defined for “severe injury” [Severe]; “minor injury” [Minor]. 

*Not significant at the 5% significance level. 
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The results suggest that RD crash frequency on two-lane roadways (Table 13) is 

significantly influenced by ADT, shoulder width, speed limit, pavement roughness, and curb.  

The positive coefficients for the ADT and speed limit variables indicate that as those values 

increased, the number of crashes also increased.  The negative values for the shoulder width and 

pavement roughness variables indicate that the number of crashes decreased as those variables 

increased.  Figure 11 shows the predicted number of RD crashes as shoulder width and speed 

limit change at different traffic flow levels.  It may be seen that RD crashes can be expected to be 

most frequent on high speed–high volume segments with narrow shoulders.  The figure also 

shows that widening the shoulder, lowering the speed limit, or both would reduce the predicted 

number of crashes at all traffic flow levels; however, the magnitude of change would decrease 

slightly as shoulder width progressively increased.  Figure 11 can be helpful in determining the 

speed limit–shoulder width combination needed to attain a target RD crash frequency. 

 

The absence of a curb (or gutter) was also significantly associated with increased crash 

frequencies, as shown by a positive coefficient for the curb variable (Table 13).  This variable 

was not found to have a significant influence on RD crashes in the northern region.   

 

RD crash frequency on divided multi-lane roadways (Table 14) was significantly 

influenced by ADT, shoulder width, speed limit, and median width.  The coefficient for median 

width was positive, suggesting that the number of crashes increased as the median width 

increased.  This might be because of higher operating speeds on roads with wider medians.  The 

other variables influenced crash frequency in a manner similar (positive or negative) to how they 

influenced crash frequency on two-lane roadways.  For undivided multi-lane roadways (Table 

15), only ADT and speed limit were found to influence crash frequency.  Analysis for undivided 

multi-lane roadways was not done for the northern region because there were insufficient data 

(only 24 valid observations) for reliable statistical analysis. 

 
Table 13. Negative Binomial Model Results of Roadway Departure Crash Frequency for Two-Lane 

Roadways 

 

 

Variable 

Estimate (Standard Error) 

Northern 

Region 

Western 

Region 

Eastern 

Region 

 

Statewide 

Intercept -5.7556 (0.3401) -5.7838 (0.17) -6.6989 (0.2866) -6.0276 (0.1334) 

log(ADT) 0.6688 (0.0271) 0.5773 (0.0127) 0.6149 (0.0208) 0.6043 (0.0098) 

Average shoulder width (ft) -0.1226 (0.0134) -0.118 (0.0073) -0.1526 (0.0109) -0.1294 (0.0055) 

Speed limit (mph) 0.0129 (0.0036) 0.0143 (0.0017) 0.0272 (0.0029) 0.0165 (0.0013) 

Pavement roughness (in/mi) -0.0026 (0.0006) -0.001 (0.0003) -0.0033 (0.0005) -0.0016 (0.0002) 

Curb (1 if no curb or gutter; 0 

otherwise) 

  0.5719 (0.1464) 0.6316 (0.2509) 0.5237 (0.1159) 

Dispersion parameter 0.4613 (.0359) 0.3863 (0.0181) 0.4383 (0.0314) 0.4253 (0.0147) 

          

Model Statistics  

Number of observations 2,929  11,841  6,400  21,170  

Log-likelihood -3535 -13248 -5996 -22859 

Akaike information criterion 

(AIC) 

7,084  26,510  12,007  45,733  

Predicted (observed) counts: 

     0 53% (62%) 55% (65%) 63% (71%) 57% (67%) 

     1 20% (17%) 22% (18%) 19% (15%) 21% (17%) 
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Figure 11. Change in Roadway Departure Crash Frequency With Change in Speed Limit and Shoulder 

Width.  AADT = annual average daily traffic. 

 
Table 14. Negative Binomial Model Results of Road Department Crash Frequency for Divided Multi-Lane 

Roadways 

 

 

Variable 

Estimate (Standard Error) 

Northern 

Region 

Western 

Region 

Eastern 

Region 

 

Statewide 

Intercept -8.2780 (0.9355) -8.1896 (0.5632) -6.964 (0.6703) -7.2455 (0.4057) 

log(ADT) 0.8618 (0.0906) 0.7536 (0.0508) 0.5463 (0.0540) 0.6095 (0.0327) 

Average shoulder width (ft) -0.0513 (0.0161) -0.0254 (0.0109)     

Speed limit (mph)   0.0273 (0.0063) 0.0234 (0.0079) 0.0253 (0.0047) 

Average median width (ft) 0.0081 (0.0024)   0.0063 (0.0011) 0.0027 (0.0005) 

Dispersion parameter 0.1973 (0.0460) 0.4126 (0.0358) 0.3091 (0.0439) 0.4029 (0.0268) 

          

Model Statistics  

Number of observations 359 1,470 953 2775 

Log-likelihood -632 -2,612 -1,436 -4,734 

Akaike information 

criterion (AIC) 

1,274  5,233  2,882  9,478  

Predicted (observed) counts: 

     0 27% (29%) 31% (35%) 38% (42%) 33% (37%) 

     1 23% (21%) 23% (19%) 24% (23%) 23% (21%) 
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Table 15. Negative Binomial Model Results of Roadway Departure Crash Frequency for Undivided Multi-

Lane Roadwaysa 

  

Variable 

Estimate (Standard Error) 

Western Region Eastern Region* Statewide 

Intercept -3.7033 (1.3277) -8.9931 (1.0465) -6.5465 (0.9098) 

log(ADT) 0.3913 (0.1541) 0.6916 (0.0853) 0.5293 (0.0849) 

Speed limit (mph)   0.0466 (0.0109) 0.0298 (0.0084) 

Dispersion parameter 0.8107 (0.1679)  0.5134 (0.0927) 

        

Model Statistics  
Number of observations 230 221 468 

Log-likelihood -319 -266 -622 

Akaike information 

criterion (AIC) 

643  537  1,252  

Predicted (observed) counts:  
    0 49% (50%) 46% (51%) 47% (50%) 

    1 23% (24%) 25% (22%) 24% (23%) 
a A separate model was not estimated for the northern region because the sample size was too small (only 24 valid 

observations). 
*Estimates are based on a Poisson regression model as dispersion parameter of negative binomial model was not 

significant at a 5% significance level. 

 

The likelihood ratio test for similarity of regional subgroup model parameter values was 

rejected with high confidence (greater than 99.99%), indicating that the use of separate models 

for the different regions was statistically warranted. 
 

Impacts of Roadway Geometry and Pavement Condition 
 

This part of the study explored potential impacts of roadway geometry and pavement 

(including shoulder) condition on RD crash frequency using the secondary dataset that was 

constructed by supplementing data from standard VDOT Oracle databases with iVision and 

recently available SCRIM data.  Data were aggregated based on the iVision segments.  Since 

these segments are relatively short (mean length 0.09 miles for this study), most segments had 

zero crashes.  The proportion of zero counts in terms of all crash types was approximately 74%.  

As for dry- and wet-pavement crashes, the percentages of zero counts were 82% and 91%, 

respectively.  Therefore, the ZIP model was used to analyze this dataset. 

 

The ZIP model was used to relate crash frequency to the roadway geometry and 

pavement condition variables described in Table 7.  Several combinations of the variables were 

tested using stepwise regression methods.  Table 16 provides a summary of the modeling results 

obtained using SAS software.  Separate models were estimated for total crashes (all types) and 

for dry-pavement crashes.  Both models showed good agreement between the observed 

probability distribution and the average probability distributions predicted using the estimated 

models.  No statistically reliable results were obtained for wet-pavement crashes because of the 

small sample size. 
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Table 16. ZIP Model Results of Roadway Departure Crash Frequency 

 

Variable 

Estimate (t-statistic) 

All Crashes Dry-Pavement Crashes 

Count Model     

Intercept -3.078 (-0.85) -5.136 (-1.11) 

Average daily traffic (veh/day) 0.662 (1.59) 0.952 (1.79) 

Change in speed limit from adjacent segment (mph) 0.06 (1.69) 0.082 (2.1) 

Average gradient within segment (%) -0.035 (-1.92) -0.046 (-1.91) 

Average cross slope within segment (%) 0.097 (2.34) 0.032 (0.59) 

Average curvature within segment (1/mi) 0.186 (2.00) 0.082 (0.72) 

Skid resistance / SCRIM coefficient -0.042 (-3.4) -0.059 (-3.47) 

Right shoulder width (ft) -0.196 (-2.17) -0.289 (-1.96) 

Right shoulder is paved (1 = paved) -0.136 (-0.16) 0.856 (0.86) 

Left shoulder is paved (1 = paved) -0.46 (-0.56) -0.328 (-0.32) 

Proportion of right shoulder material in relatively good condition 1.003 (1.18) 0.104 (0.11) 

Proportion of right shoulder material in fair condition 0.576 (0.63) -0.148 (-0.14) 

Proportion of shoulder experiencing a drop-off greater than 3 in 7.669 (0.33)   

Proportion of left shoulder material in relatively good condition 1.184 (1.38) 0.977 (0.89) 

Zero-inflation Model     

Intercept -6.885 (-1.86) -13.376 (-2.43) 

Mean profile depth (x 0.0394 in) 1.761 (2.13) 1.433 (1.45) 

Pavement roughness (in/mi) 0.02 (3.55) 0.034 (3.81) 

Lane width (ft) 0.587 (1.83) 1.059 (2.26) 

   
Model Statistics  

Log likelihood -709 -496 

Akaike information criterion (AIC) 1454 1026 

Bayesian information criterion (BIC) 1540 1107 

Predicted (observed) counts 

    0 74% (74%) 82% (82%) 

    1 17% (17%) 14% (13%) 

ZIP = Zero-inflated Poisson. 

 

The positive coefficients for MPD, pavement roughness, and lane width in the zero-

inflation model indicate that the odds of being in the near-zero crash state increased as those 

variables were increased.  The count model results suggest that crash frequency is statistically 

significantly influenced by cross slope, curvature, shoulder width, and skid resistance.  The signs 

of the coefficients indicate that the number of crashes increased as the average cross slope and 

curvature increased and decreased as the shoulder width and skid resistance increased.  The 

number of dry-pavement crashes also decreased as shoulder width and skid resistance increased. 

 

Table 17 compares observed crash counts to predictions of the ZIP and NB models.  The 

comparisons were based only on study segments for which SCRIM and iVision data were 

available.  Predictions for the ZIP model, which were based on iVision segments, were 

aggregated over their corresponding segments from the primary database before comparisons 

were made. 
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Table 17. Comparison of ZIP Model and Negative Binomial Model Predictions for Select Segments 

 

 

Model 

Metric 

Predicted Crashes 

(Observed = 278) 

Mean Square 

Error 

 

Mean Bias 

Mean Absolute 

Deviation 

Negative binomial 236 21.9 -0.480 1.94 

Zero-inflated Poisson 280 16.8 0.028 1.93 

    ZIP = zero-inflated Poisson. 

 

The mean absolute deviation estimates were nearly identical for the two models.  

However, the NB model seemed to have underestimated systematically the overall average crash 

count.  The total crash count predicted by the ZIP model over all segments was nearly equal to 

the sum of observed counts; the NB model predicted approximately 15% fewer crashes. 

 

 

Summary and Discussion 

 

This study examined the factors related to RD crashes on rural highways in Virginia.  A 

review of archived data for the years 2014-2018 showed a general downward trend in RD 

crashes except for 2018 where, for the segments studied, RD crashes increased by an average of 

7% compared to the previous 4-year average.  A majority of crashes were non-injury crashes, 

with fatal and injury crashes constituting approximately 43% of the total number of RD crashes 

during the analysis period.  Approximately 52% of all crashes occurred on a tangent section.  

However, for two-lane roadway segments, proportionally more crashes (approximately 54%) 

were on horizontal curves. 

 

An initial exploratory analysis identified 10 factors with high potential for explaining RD 

crashes including roadway functional class, speed limit, AADT, shoulder and median widths, 

traffic control (e.g., lane markings), pavement roughness, and road surface conditions.  Further 

analysis of how these factors might affect crash frequency and severity indicated that shoulder 

width, speed limit, lane markings, and wintry conditions were all significantly associated with 

injury severity levels.  The study also found a significant association between the frequency of 

RD crashes and AADT, shoulder width, speed limit, and pavement roughness.  In general, these 

factors did not affect RD crashes similarly across the state.  For example, the effect of shoulder 

width on injury severity was not significant in the northern and eastern parts of the state. 

 

The results suggested that widening roadway shoulders can provide significant reductions 

in RD crash frequency with a statistically significant but practically marginal increase in the 

number of severe injury crashes, especially on two-lane segments with speed limits greater than 

45 mph.  Neuner et al. (2016) found more than one-half of speeding-related RD fatal crashes 

occurred on roadways with a posted speed limit between 40 and 55 mph and that addressing 

curves was the major aspect of preventing speeding-related RD crashes.  In the western region, 

where there are more curvature interactions with speed, about 58% of fatal and injury RD 

crashes on two-lane roadway segments occurred on curves; the numbers for the northern and 

eastern regions were 49% and 47%, respectively.  
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This study also explored safety analysis using iVision and SCRIM data.  Both systems 

can provide synchronization of surface condition and roadway geometry data.  The factors 

collected by iVision and SCRIM but not existing in the RNS and COTEDOP databases provided 

a new opportunity to identify high-risk locations where the current RD SPFs may underestimate 

the risk because of the new factors not included in the models.  Statewide road surveys using 

iVision and SCRIM, in addition to hotspots analysis and project-based study, would make it 

possible to conduct safety analyses on a large scale.  Analysis of a sample of such data in this 

study found a statistically significant association between RD crash frequency and geometric 

characteristics such as cross slope and curvature.  A significant association was also found 

between crash frequency and pavement skid resistance, a variable that is at present collected on a 

routine basis. 

 

Ideally, the skid resistance from the SCRIM survey for the crash year should be used as 

the level of skid resistance changes over time.  Because of very limited data availability, this 

study used data collected in 1 year as an indicator for a 5-year period for the segments without 

any major maintenance.  Further study with more data and a larger sample size is needed.  A 

comparison of predictions from the analysis involving SCRIM and iVision data (ZIP model) 

with analysis based only on the primary dataset (NB model) for identical segments suggested 

moderately superior performance by the former.  However, the NB model predictions seemed 

generally acceptable (approximately 15% error in total crash count estimate).  It is also unclear 

how much of the differences in predictions are the result of differences in the underlying data or 

the types of models used for the predictions.  Although the newly available SCRIM data holds 

promise for deriving further insights into factors correlated with RD crashes, there can be 

significant challenges to mainstreaming it for analysis.  For example, data conflation was a very 

time-consuming task in this study.  Geo-spatial information and roadway inventory (unique route 

name, direction, and milepost) comprise the key for connecting these databases.  However, the 

key information is coded in different formats, making it very difficult to establish a connection, 

especially for the secondary roads and business roads.  Standardizing those key data fields is 

very valuable.  Collecting and synthesizing these data at the statewide level could be challenging.  

Nevertheless, where available, they could be used to enhance crash data analysis at the project 

level. 

 

A review of FHWA publications, state strategies, and the CMF Clearinghouse was 

conducted to identify low-cost treatments for RD crashes on rural two-lane and multi-lane 

highways.  The low-cost engineering countermeasures with proven CMFs specified for RD 

crashes included the following:  

 

 Install centerline and shoulder rumble strips. 

 Install edge line rumble strips. 

 Install shoulder safety edge treatment. 

 

The analysis of the secondary data found that many segments on US 29 Northbound had 

a high wet crash ratio.  Further investigation is needed for those segments, and some may benefit 

from high friction surface treatment, which was found to reduce wet-condition crashes by 52%.  

The cost of this treatment is moderate. 
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CONCLUSIONS 

 

 Locations with narrower shoulders are more likely to have more RD crashes.  Multi-faceted 

analyses in this study consistently indicated that shoulder width is significantly associated 

with RD crash frequency, decreasing as shoulder width increased.  

 

 Locations with horizontal curves are more likely to have frequent RD crashes.  The study 

found a significant association between RD crash frequency and roadway curvature, with 

crash frequency increasing as curvature increased.  

 

 Locations with narrow shoulders and high speed limits are more prone to RD crashes.  A 

plot of the predicted number of RD crashes on two-lane roadways as a function of shoulder 

width and speed limit (Figure 11) showed that RD crashes are more likely at locations with 

high speed limit–narrow shoulder combinations. 

 

 Roadway geometry and pavement condition affect the frequency of RD crashes.  Analysis in 

this study using SCRIM and iVision data found a significant association between roadway 

geometry (curvature, cross slope) and pavement surface condition (skid resistance, 

roughness). 

 

 The various factors do not affect all parts of the state evenly.  In several cases in this study, 

potential influencing factors, even for the same roadway type, were found to be significant in 

one region of the state and not significant in others. 

 

 

RECOMMENDATIONS 

 

1. VDOT’s TED should prioritize systemic countermeasure deployment on horizontal curves on 

rural two-lane roadway segments with shoulder widths less than 3 ft.  RD crash frequency 

was highest on segments for which the average shoulder width was less than 3 ft and 

decreased as shoulder width increased.  Also, proportionally more crashes occurred on 

horizontal curves of two-lane roadway segments than on tangent sections.  There is the 

potential to derive substantial safety benefits by implementing low-cost countermeasures. 

 

2. VDOT’s TED should utilize the findings of this study to assess safety tradeoffs between speed 

limits and shoulder width when assessing RD crashes on rural two-lane roadways. 

 

3. VTRC should conduct a pilot study to study further the use of SCRIM and iVision data for 

safety studies; identify standard procedures for data processing; and conduct case studies.  

Early results from this study are promising, but additional data need to be acquired to 

determine if predictive benefits justify the additional effort required to use these datasets. 
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IMPLEMENTATION AND BENEFITS 

 

Implementation 

 

For Recommendation 1, VDOT’s TED should focus on rural two-lane segments with the 

stated features during the next round of Highway Safety Improvement Program systemic 

improvement projects.  A summary of potential engineering countermeasures is provided in 

Table 1 and in the Virginia State Preferred CMF List (VDOT, n.d.).  Specific countermeasures 

from these resources with proven effectiveness include installing horizontal curve warning signs, 

safety edge treatments, and rumble strips.  In addition, the results of an ongoing VTRC study, 

Development of a Systemic Safety Improvement Plan for Two-Lane Rural Roads in Virginia, 

should assist with this.  TED is already implementing some of these measures as part of an 

ongoing process to comply with curve signing requirements in the Manual on Uniform Traffic 

Control Devices for Streets and Highways (MUTCD). 

 

With regard to Recommendation 2, within 3 months of the publication of this report, 

VDOT’s TED will encourage and promote the use of Figure 11 in VDOT’s regions to help 

determine the speed limit–shoulder width combination needed to mitigate RD crashes on two-

lane roadways. 

 

For Recommendation 3, within 2 years of at least two SCRIM surveys becoming 

available for statewide locations, VTRC’s Traffic and Safety Research Advisory Committee will 

assess the need for a more extensive study to evaluate the opportunities and challenges of using 

SCRIM and iVision data for VDOT safety studies.  The SCRIM surveys should cover rural two-

lane and multi-lane highways.  At least 3 years need to elapse to accumulate enough crash data to 

construct robust models.  At this point, this project idea will be discussed and balloted within the 

research advisory committee. 

 

 

Benefits 

 

The implementation of Recommendation 1 will help VDOT maximize the effectiveness 

of efforts to reduce the frequency and severity of rural RD crashes.  The study found that 

horizontal curves have a high incidence of RD crashes, so low-cost systemic countermeasures 

have a high potential to produce significant crash reductions. 

 

The implementation of Recommendation 2 will encourage more informed, defendable 

decision making regarding speed setting and facilitate consistent engineering judgment across 

the state regardless of location.  This will allow speed limit and shoulder width tradeoffs to be 

considered explicitly. 

 

The implementation of Recommendation 3 will support the decisions regarding the need 

for wide application of SCRIM and iVision data and the establishment of a standard procedure 

for long-term data collection and data processing. 
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