
 
 

 

 
 
 
 

Development of Demand 
Estimation Models 
for the Virginia Department 
of Transportation’s Park 
and Ride Facilities 

 
http://www.virginiadot.org/vtrc/main/online_reports/pdf/21-r19.pdf 

 
 
YIQING XU 
Graduate Research Assistant 
 
LANCE E. DOUGALD 
Senior Research Scientist 
 
JOHN S. MILLER 
Principal Research Scientist 
 
 
 
 
 
 
 
 
 
 
 
 
                        

                    Final Report VTRC 21-R19 



Standard Title Page - Report on Federally Funded Project  

1. Report No.: 2. Government Accession No.: 3. Recipient’s Catalog No.: 

FHWA/VTRC 21-R19   

4. Title and Subtitle: 5. Report Date: 

Development of Demand Estimation Models for the Virginia Department of 

Transportation’s Park and Ride Facilities 

May 2021 

6. Performing Organization Code: 

 

7. Author(s): 

Yiqing Xu, Lance E. Dougald, and John S. Miller 

8. Performing Organization Report No.: 

VTRC 21-R19 

9. Performing Organization and Address: 

Virginia Transportation Research Council 

530 Edgemont Road 

Charlottesville, VA 22903 

10. Work Unit No. (TRAIS): 

 

11. Contract or Grant No.: 

117664 

12. Sponsoring Agencies’ Name and Address: 13. Type of Report and Period Covered: 

Virginia Department of Transportation 

1401 E. Broad Street 

Richmond, VA 23219 

Federal Highway Administration 

400 North 8th Street, Room 750 

Richmond, VA 23219-4825 

Final 

14. Sponsoring Agency Code: 

 

15.  Supplementary Notes: 

This is an SPR-B report. 

16. Abstract:  

          The construction and maintenance of park and ride lots represents a substantial public investment that if used judiciously 

can reduce congestion and emissions through the use of transit or the sharing of vehicle trips.  With 297 lots scattered throughout 

Virginia, the Virginia Department of Transportation (VDOT) needs an approach for forecasting demand for these lots so that 

investments can be made wisely.  Unfortunately, direct application of an existing approach yielded absolute differences (between 

forecast occupancy and observed occupancy) that depending on the VDOT district were 14 to 141 times larger than the observed 

occupancy.  Calibrating an existing approach to Virginia-specific traffic volumes for the roadway serving the lot and the highest 

volume roadway within 2.5 miles of the lot reduced the scale of this error but still yielded forecasts where the mean testing error 

exceeded the mean occupancy for a majority of models. 

 

 Accordingly, 19 Virginia-specific models were developed that reflected distinct regions in Virginia.  These models followed 

VDOT district boundaries for three of VDOT’s nine districts (Lynchburg, Richmond, and Northern Virginia); planning district 

commission (PDC) or metropolitan planning organization (MPO) boundaries for four VDOT districts (Bristol, Culpeper, Salem, 

and Staunton); and urban/rural categorizations for two VDOT districts (Fredericksburg and Hampton Roads).  A key finding was 

that determinants of occupancy varied by location.  Statistically significant determinants included residents with a commute of 

50+ miles (used in four models affecting 10% of Virginia’s lots, such as those in the Lenowisco PDC in the Bristol District); the 

availability of transit service or the number of commuters who choose transit (used as a positive factor in seven models affecting 

more than one-half [151] of Virginia’s lots, such as those in the urbanized portion of the Culpeper District); amenities such as 

lighting (a variable in two models reflecting 15% of Virginia’s lots such as those in the low population density areas of the 

Fredericksburg District); traffic volume (a factor in five models representing 46% of Virginia’s lots, such as those in the 

Lynchburg District); and the provision of  bicycle spaces (a factor in the model for 78 of the Northern Virginia District lots, or 

about 26% of the statewide total).  Thus, the models can help forecast how key changes (such as an increase in traffic, the 

introduction of transit service, or the addition of lighting) may influence demand at an existing lot. 

 

          The median-adjusted R-squared value (coefficient of determination) for the 19 models was 87%.  The Richmond District 

was representative:  a model based on the average 24-hour traffic volume of all facilities within 2.5 miles of the lot and the 

nearest peak hour expansion factor explained 86.7% of the variation in occupancy for the 11 lots in that district.  When the 

models were tested on a dataset not used to build the models, the median ratio of mean testing error to mean occupancy was 56%.  

A typical model in this regard was for the lots in the Roanoke Valley-Alleghany Regional Commission (in the Salem District) 

where occupancy was based on the presence of transit service and the proportion of nearby residents with commutes of 25 to 50 

miles:  the mean testing error was 14 compared to a mean lot occupancy of 25, for a ratio of 56%.  The models thus explained a 

portion of the variation in demand and can inform forecasts for new lots, although these results demonstrated that additional site-

specific factors not included in each model also influenced demand. 

 

 

17 Key Words: 18. Distribution Statement: 

Park and ride, multimodal transportation, fringe parking, 

parking demand 

 

No restrictions.  This document is available to the public 

through NTIS, Springfield, VA 22161. 

19. Security Classif. (of this report): 20. Security Classif. (of this page): 21. No. of Pages: 22. Price: 

 Unclassified Unclassified 87  

  Form DOT F 1700.7 (8-72)                                                                                             Reproduction of completed page authorized 



 

 

FINAL REPORT 

 

DEVELOPMENT OF DEMAND ESTIMATION MODELS FOR THE VIRGINIA 

DEPARTMENT OF TRANSPORTATION’S PARK AND RIDE FACILITIES 

 

 

Yiqing Xu 

Graduate Research Assistant 

 

Lance E. Dougald 

Senior Research Scientist 

 

John S. Miller 

Principal Research Scientist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Cooperation with the U.S. Department of Transportation 

Federal Highway Administration 

 

Virginia Transportation Research Council 

(A partnership of the Virginia Department of Transportation 

and the University of Virginia since 1948) 

 

Charlottesville, Virginia 

 

June 2021 

VTRC 21-R19 



ii 

 

DISCLAIMER 

 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the data presented herein.  The contents do not necessarily reflect the 

official views or policies of the Virginia Department of Transportation, the Commonwealth 

Transportation Board, or the Federal Highway Administration.  This report does not constitute a 

standard, specification, or regulation.  Any inclusion of manufacturer names, trade names, or 

trademarks is for identification purposes only and is not to be considered an endorsement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2021 by the Commonwealth of Virginia. 

All rights reserved. 

  



iii 

 

ABSTRACT 

 

 The construction and maintenance of park and ride lots represents a substantial public 

investment that if used judiciously can reduce congestion and emissions through the use of 

transit or the sharing of vehicle trips.  With 297 lots scattered throughout Virginia, the Virginia 

Department of Transportation (VDOT) needs an approach for forecasting demand for these lots 

so that investments can be made wisely.  Unfortunately, direct application of an existing 

approach yielded absolute differences (between forecast occupancy and observed occupancy) 

that depending on the VDOT district were 14 to 141 times larger than the observed occupancy.  

Calibrating an existing approach to Virginia-specific traffic volumes for the roadway serving the 

lot and the highest volume roadway within 2.5 miles of the lot reduced the scale of this error but 

still yielded forecasts where the mean testing error exceeded the mean occupancy for a majority 

of models. 

 

 Accordingly, 19 Virginia-specific models were developed that reflected distinct regions 

in Virginia.  These models followed VDOT district boundaries for three of VDOT’s nine 

districts (Lynchburg, Richmond, and Northern Virginia); planning district commission (PDC) or 

metropolitan planning organization (MPO) boundaries for four VDOT districts (Bristol, 

Culpeper, Salem, and Staunton); and urban/rural categorizations for two VDOT districts 

(Fredericksburg and Hampton Roads).  A key finding was that determinants of occupancy varied 

by location.  Statistically significant determinants included residents with a commute of 50+ 

miles (used in four models affecting 10% of Virginia’s lots, such as those in the Lenowisco PDC 

in the Bristol District); the availability of transit service or the number of commuters who choose 

transit (used as a positive factor in seven models affecting more than one-half [151] of Virginia’s 

lots, such as those in the urbanized portion of the Culpeper District); amenities such as lighting 

(a variable in two models reflecting 15% of Virginia’s lots such as those in the low population 

density areas of the Fredericksburg District); traffic volume (a factor in five models representing 

46% of Virginia’s lots, such as those in the Lynchburg District); and the provision of  bicycle 

spaces (a factor in the model for 78 of the Northern Virginia District lots, or about 26% of the 

statewide total).  Thus, the models can help forecast how key changes (such as an increase in 

traffic, the introduction of transit service, or the addition of lighting) may influence demand at an 

existing lot. 

 

The median-adjusted R-squared value (coefficient of determination) for the 19 models 

was 87%.  The Richmond District was representative:  a model based on the average 24-hour 

traffic volume of all facilities within 2.5 miles of the lot and the nearest peak hour expansion 

factor explained 86.7% of the variation in occupancy for the 11 lots in that district.  When the 

models were tested on a dataset not used to build the models, the median ratio of mean testing 

error to mean occupancy was 56%.  A typical model in this regard was for the lots in the 

Roanoke Valley-Alleghany Regional Commission (in the Salem District) where occupancy was 

based on the presence of transit service and the proportion of nearby residents with commutes of 

25 to 50 miles:  the mean testing error was 14 compared to a mean lot occupancy of 25, for a 

ratio of 56%.  The models thus explained a portion of the variation in demand and can inform 

forecasts for new lots, although these results demonstrated that additional site-specific factors not 

included in each model also influenced demand. 
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INTRODUCTION 

 

Park and ride lots provide common locations for individuals to transfer from a low to a 

high occupancy travel mode.  Such lots are thus a critical part of a multimodal transportation 

system, providing benefits to users (in the form of reduced travel costs); the roadway network 

(by increasing vehicle occupancy rather than the number of vehicles); and the environment by 

reducing emissions (Virginia Department of Transportation [VDOT], 2019a).  Investments in 

park and ride lots are a part of Virginia’s multimodal program, and demand at such lots affects 

their relative value when programming decisions are made, such as selection of candidate 

projects in SMART SCALE.  For that reason, VDOT is interested in being able to forecast 

demand at these lots, especially as a function of potential influences such as lot amenities, traffic 

volume, or population. 

 

 The research team is aware of 297 park and ride lots in Virginia including state-owned, 

privately owned, and unofficial lots.  Most lots are concentrated in urbanized areas (e.g., 

VDOT’s Hampton Roads, Richmond, and Northern Virginia districts, as shown in Figure 1) and 

the I-81 corridor.  VDOT performed lot audits in 1996, 2002, 2011, 2016, and 2018.  These 

audits typically provided detailed information on each lot such as capacity (parking spaces); 

occupancy (vehicle counts); and other attributes such as lot surface type, lighting, transit service 

and shelters, bicycle accommodations, handicapped spaces, and parking fees (if applicable).  

Data obtained from such audits also enable VDOT to develop plans for future lots or consider 

expansion of existing lots based on demand forecasts. 

 

 

Recent Virginia Forecasting Initiatives 

 

Two initiatives prior to the current study to forecast demand at park and ride lots in 

Virginia did not yield useful information, at least on a small scale.  First, the technical review 

panel (TRP) overseeing the current study reported that an approach employed by the Florida 

Department of Transportation (FDOT) (FDOT, 2012) yielded absolute errors for individual lots 

(difference between forecast and observed occupancy) that tended to be 3 to 4 times larger than 

the observed occupancy.  In the Fredericksburg, Virginia, area, these errors were 
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underestimates—forecast occupancy was between one-fifth and one-third observed occupancy; 

in VDOT’s Staunton District, forecast occupancy was an overestimate of between 3 and 4 times 

observed occupancy (Mobayed, 2019).  Second, and prior to the current study, VDOT’s 

Transportation Mobility and Planning Division’s (TMPD) application of a corridor-specific 

strategy (BMI et al., 2003) underestimated 2019 demand for Stafford County lots by a factor of 

17 (where the 2003 model gave a forecast for 2020 demand and the research team presumed that 

the 2020 demand would be the same as the observed demand in 2019).  The error associated with 

these demand estimation methods prompted interest from the TRP to develop new forecasting 

methods.   

 

 
Figure 1. The 297 Park and Ride Lots in Virginia 

 

Literature Review of Previous Forecasts 

 

The literature included examples of models that were developed to forecast park and ride 

lot demand, and the research team sought to apply these types of models to Virginia.  There were 

also several sources that although not explicitly developing a mathematical model for estimating 

occupancy based on observed behavior nonetheless informed the development of models that 

were later used in this particular study.  This literature was categorized across five overlapping 

areas: 

 

1. diversion models 

2. regression-based models 

3. other analytical approaches 

4. lessons learned from forecasting  

5. implications of the literature review.  
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Diversion Models 

 

One approach is to estimate demand as some portion of the total traffic on the facility, or 

facilities, near the park and ride lot.  This approach presumes that the only lot users are those 

who pass by the lot as part of their normal travel path, such that a road with no volume will yield 

a park and ride lot with zero occupancy.  Five publications (FDOT, 2012; Nungesser and 

Ledbetter, 1987; Southwest Region Planning Commission et al., 2015; Turnbull, 1995; Vincent, 

2007) referred to this approach as having been developed by the Institute of Transportation 

Engineers. 

 

  This approach has been defined in at least three slightly different ways in terms of the 

peak hour volume and the percent of traffic that is forecast to use the park and ride lot.   

 

1. FDOT (2012) considered both a “primary” facility, defined as the “main commuting 

roadway” near the park and ride lot (with a diversion factor of 0.03), and “secondary” 

facilities that are commuting routes of “lesser importance” (with a diversion factor of 

0.01).  FDOT did not specify an explicit distance but rather stated:  “The primary 

roadway is considered to be the main commuting roadway in the vicinity of the Park-

and-Ride lot.” 

 

2. Nungesser and Ledbetter (1987) referred to a seemingly similar approach but with 

one key difference:  the “secondary” facilities cited by FDOT (2012) were instead 

defined as “total peak period traffic on adjacent facilities (including the prime 

facility).”  Vincent (2007) appeared to have used the same definition as Nungesser 

and Ledbetter (1987) but described the model only in a literature review.  Nungesser 

and Ledbetter (1987) reported that for lots in Houston (Texas), calibration was 

essential, as the authors found that the diversion factors should be 0.083 (rather than 

0.03) for the primary facility on which the lot is situated and -0.036 (rather than 0.01) 

for the other peak facilities, as the authors removed the primary facility from these 

other peak facilities for the purpose of calibration.   

 

3. For New Hampshire lots, the Southwest Region Planning Commission et al. (2015) 

modified the Institute of Traffic Engineers method to use a single parameter—the 

percent of peak traffic passing by the facility or near the facility was 1% if two or 

fewer demographic thresholds were exceeded by communities near the lot or 3% if all 

five demographic thresholds were exceeded.  If three or four thresholds were 

exceeded, the percentage was 2%.  These thresholds are on a square mile basis: (1) 

population age 15-39 (47.3); (2) persons working outside the home (53.47); (3) 

number of households where housing costs exceed 30% of household income (22.68); 

(4) non-family households (19.28); and (5) households with 0 or 1 vehicles (20.8).  

One may suppose, for example, a community has 60 persons age 15-39 and 70 

persons working outside the home per square mile, which exceeds Thresholds 1 and 

2.  For such a community, if Thresholds 3, 4, and 5 were not exceeded the percentage 

would be 1%.  The authors indicated that this approach may be applied to more than 

one commuter facility near the lot. 
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Regression-Based Models 

 

In addition to the diversion model, linear regression models have been tailored to specific 

park and ride lots.  Nordstrom and Christiansen (1981) used a linear regression model to forecast 

park and ride lot demand in six cities in Texas as a function of population within the catchment 

area; a custom congestion index (which in turn was based on delay and average daily traffic 

[ADT]); and a third variable that was based on the number of spaces at the lot and the number of 

bus seats during peak periods.  The authors explained that park and ride lots sometimes exceeded 

capacity.  When all lots were aggregated for each region, the authors obtained good model fits 

for these variables, explaining 93% of the variance.  For individual lots, errors with the training 

data (e.g., one compares the forecast to observed value for a lot used to build the model) ranged 

from a 198% underprediction to a 325% overprediction; when framed as absolute values, the 

average error (computed by the research team) was 43%.  The authors concluded that if located 

properly in congested corridors, park and ride lots could capture “perhaps as much as 2.5% to 

3.0” of the catchment area population.   

 

Peng and Mohamad (2005) developed a model for forecasting demand at 12 light rail 

transit lots in Kuala Lumpur as a function of four variables:  daily passengers using the light rail 

service, mean parking time in hours, whether there is a fee for parking, and whether there is 

feeder bus service.  The authors noted that although all four variables could be forced into the 

model, stepwise regression showed that only two of the variables were significant (p = 0.05 or 

below):  the number of passengers using light rail and whether there is a fee; this model 

explained 99% of the variation in the 12 lots.  The stepwise model reduced the standard error of 

the chosen variables.  For example, when the initial regression model was developed with all 

four variables, the binary variable for parking fee had a standard error of 55.8 and was not 

significant (p = 0.22).  The stepwise method reduced this standard error to 33.0 and rendered it 

significant (p = 0.01).  Thus, Peng and Mohamad (2005) articulated the value of judicious 

variable selection when building models. 

 

Spillar (1997) developed five models that forecast demand for King County lots (Seattle 

area); the models yielded adjusted R-squared (R2) values between 0.40 and 0.68 and were based 

on up to 31 lots; some of the models excluded the 9 lots for which demand exceeded capacity.  

Then, the authors performed an additional step not undertaken in any other studies reviewed by 

the research team:  the authors assessed not the training error but rather the testing error—that is, 

the difference between a forecast value and observed value for a lot that was not used to build the 

initial model.  The authors initially found that the models were not directly transferrable:  the 

models (based on Seattle) tended to overestimate demand when applied to lots in Denver by a 

factor from 1.7 to 2.9 depending on the model.  Based on this discrepancy the authors then 

determined a correction factor for each model to make it transferable to Denver and then 

reapplied the corrected Seattle models.  For the best Seattle model (which had an adjusted R2 of 

0.68), after the correction factor was applied, the average testing error (174) was 1.07 times the 

average occupancy (162) for the 11 Denver lots where the model was tested.  For a Seattle model 

with a lower adjusted R2 of 0.45, testing on 12 Denver lots (the original 11 plus another) yielded 

an average testing error of 93, which was 0.47 times the average occupancy for the 12 lots (195).  
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Vincent (2007) also developed forecasts for park and ride lots served by rail in New 

Zealand, where the author employed binary variables to represent variation in demand by line.  It 

should be noted that the combination of the intercept and the binary variable divided by the 

average occupancy was substantial; for example, for the “Western” line, the intercept (81.427) 

was about one-third of the average occupancy of 225.6 as tabulated by the research team; the 

ratio was smaller for one line (0.07) and larger for the other line (0.80).  The model explained 

96% of the variance, with key variables being the presence of express service, whether the 

station is patrolled, advertising, population, presence of a nearby lot (which would draw users 

away from an existing lot), and the fare; generally, the ratio of error based on the training data to 

the average occupancy was between 0.13 and 0.17 for the three lines.  Of interest was that certain 

variables did not influence demand, notably, proximity to state highways and lighting, and that 

other variables should be removed because they had the wrong sign (e.g., a paved lot should 

increase occupancy relative to an unpaved lot, but this variable was removed as it had the wrong 

sign). 

 

Other Analytical Approaches  

 

Forecasting approaches may also be based on regional travel demand models; for 

example, FDOT (2012) showed how the share of home-based work auto trips can be used to 

estimate park and ride lot demand in urban centers.  Virginia has also used regional models to 

forecast park and ride lot demand:  in the I-395 corridor, the I-95/I-395 Transit/TDM Technical 

Advisory Committee (2008) used the Northern Virginia regional model, which had provided 

mode choice estimates for trips using the “drive access to transit” mode (as well as the “drive 

access to HOV” mode); these were post-processed to estimate demand.  That same source 

reported the need to make some site adjustments; for example, the Horner Road Park and Ride 

Lot’s forecast demand was increased by one-fifth to account for unique factors at that location.  

Vincent (2007) also used a regional model that was suitable for determining aggregate demand 

for park and ride lots by “sector” (e.g., groups of lots by geographic location), as opposed to 

individual lots; in that endeavor, cost and time data by mode were used. 

 

Forecasts may also use sketch planning methods; for example, Jacobs (2010) forecast 

demand for park and ride lots that serve carpools based on existing use plus expected growth in 

interchange traffic volume and a further increase of 14% if high occupancy vehicle (HOV) lanes 

were in proximity of the lot.  VHB Engineering, NC (2013) reported the use of a constant growth 

factor of 1.5% for existing park and ride lots in the Chapel Hill, North Carolina, area for the 

period 2011-2035.  (Then, anticipated changes in demand from anticipated land development or 

better transit service may be used to adjust the forecast.) 

 

Off-the-shelf models also exist for fixed guideway facilities.  Cherrington et al. (2017) 

described such models, which may be appropriate for the Virginia Railway Express (VRE) and 

Washington Metropolitan Area Transit Authority (WMATA) lots in the Northern Virginia 

District; for example, one model (which the authors noted is detailed in Transit Cooperative 

Research Program Report 153) can be used to determine how the price of parking, bus service, 

bicycle access, pedestrian access, and the presence of transit-oriented development affect parking 

demand.  For the purposes of this report, WMATA is referred to by its common name, i.e., 

“Metro.” 
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Lessons Learned From Forecasting 

 

 The literature also suggests five key themes that should be considered in forecasting 

demand.   

 

1. There is not necessarily a uniform catchment area. 

2. There may be multiple market segments.  

3. Socioeconomic variables should be included in the model.   

4. The impact of amenities on demand is unknown. 

5. Models are not usually directly transferrable. 

 

There Is Not Necessarily a Uniform Catchment Area   

 

Cherrington et al. (2017) reported that the sizes of catchment areas vary—an observation 

borne out by other literature.  Beattie (2014) demonstrated the importance of considering 

variable catchment areas:  surveys of bicyclists and pedestrians who parked at facilities serving 

shared use paths located in New York’s Hudson Valley and “other parts of the country” showed 

catchment areas from 2 to 25 miles.  In more urban locations, catchment areas can be smaller.  

Based on surveys of users of 35 lots in the San Francisco Bay Area (in California), Shirgoakar 

and Deakin (2005) found that more than two-thirds of lot users (70%) resided within 10 minutes 

of the lot, noting that this percentage was lower (48%) for users of the 3 lots associated with the 

heavy rail system (Bay Area Rapid Transit).  Nelson\Nygaard Consulting Associates Inc. (2012) 

reported that previous work indicated that one-half of demand lived within 2.5 miles of the lot 

but also, in a footnote describing this value, stated that this value was “conservative” because 

surveys indicated that the average user would have a one-way driving distance of 6.2 miles.  

Nordstrom and Christiansen (1981) defined “catchment area” as a parabola, with sizes varying 

by location—e.g., 5 x 6 miles in Austin but 7 x 8 miles in Houston, with the larger number 

indicating the width of the parabola perpendicular to the direction of the central business district 

(CBD).  Vincent (2007) used customized catchment areas when modeling demand for each park 

and ride lot:  in New Zealand, the author used origin-destination data to determine the total lot 

patronage and then drew the catchment area for each lot at one-half of this patronage such that 

there was not a uniform radius for each lot. 

 

There May Be Multiple Market Segments   

 

Mouskos et al. (2007) suggested that when considering park and ride facilities that offer 

transit service, one could consider different market segments, such as individual drivers who take 

transit and individual drivers who may then take a common vehicle to a destination; by 

extension, one would expect attributes such as the presence of transit and the use of a carpool to 

have different influences on occupancy.  The authors also pointed out that initial results from 

their model (based on travel time to the lot, overall travel time, cost, and fare) yielded “higher 

estimates” of demand at each facility owing to challenges in representing the network.  The 

authors did not calibrate a new model but rather borrowed parameters from the literature to 

forecast park and ride lot demand via a nested logit model where users were placed into one of 

three modes:  drive alone, use the lot then take transit, or walk to the lot then take transit. 
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Socioeconomic Variables Should Be Included in the Model   

 

Cheu et al. (2012) developed a binary logit model from survey responses that sought to 

determine existing auto drivers’ willingness to use a future park and ride facility where four 

variables increased stated willingness to use such a lot.  Two variables were significant, with p-

values below 0.05:  (1) being both 24 years or younger and having an annual income of less than 

$25,000 (p = 0.04), and (2) having fewer cars in the household in increments of 0 to 5 (p = 0.02).  

In addition to the intercept, two other variables were included in the model:  (1) not being in a 

two-person household (p = 0.18), and (2) having a longer commute time in increments of 0 to 9 

minutes, 10 to 19 minutes, 20 to 34 minutes, and 35+ minutes (p = 0.23).   This work was also 

reported in a shorter report (Cornejo et al., 2014).  Elsewhere, demand has been shown to be 

relatively inelastic to cost:  Desman Associates (2012) suggested that a 1% increase in lot fees 

for lots serving rail facilities would reduce parking demand—but by a much lower figure of 

0.08%.   

 

Southwest Region Planning Commission et al. (2015) developed a 15-step approach for 

forecasting demand at future park and ride lots based on a 2.5-mile parabolic area (with the 

vertex closest to the CBD); the percent of nearby 2-, 3-, 4-, and 5-person carpools; origin-CBD 

trips obtained from the “OnTheMap” application (U.S. Census Bureau, 2020b); and an 

assumption that one-fourth of all carpoolers will use the park and ride lot.  Trip length appears to 

be a factor in urban areas:  Shirgoakar and Deakin (2005) found that “most” commuters made 

long trips, with a travel time of 53 minutes, which the authors noted suggests a trip length of at 

least 30 miles; users of the heavy rail system (Bay Area Rapid Transit ) reported a higher door-

to-door travel time of 59 minutes.  The Metropolitan Council (2010) developed forecasts for park 

and ride lots in the Minneapolis area based on population and employment forecasts, commuting 

data, and usage at existing lots; the authors reported that for the two lots for which they 

performed model validation, forecast and observed use were similar (within 1%). 

 

The Impact of Amenities on Demand Is Unknown 

 

Amenities, such as lighting, real-time information at the lot, cleanliness, and other factors 

that indicate the quality of the lot, may affect demand substantially or relatively little.  Literature 

can be found to support both viewpoints: 

 

 Some sources reported that amenities are important.  Bos et al. (2004) used 

simulation results with an existing mode choice model for Nijmegen (in the 

Netherlands) to find that the provision of traffic information for a moderately 

congested corridor could increase park and ride lot occupancy by 1.4% to 6.4% if the 

lot offered a public transportation alternative, although the authors noted that the 

“quality” of the facility (e.g., maintenance and presence of staff) could affect this 

figure.  The authors also noted that effective signage, availability of food and reading 

material, travel time information, and proximity to laundromats and shopping have 

improved lot usage (Bos et al., 2004).  Shirgoakar and Deakin (2005) reported that 

after some discussion where fees were initially negatively perceived, focus groups 

composed of California users indicated their willingness to pay fees for certain 

amenities (e.g., “$1 to $2 for security, lighting, shelters, toilets, and so on”).  The 
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authors noted that other concerns included capacity, cleanliness, and transit service 

quality, including adherence to the schedule. 

 

 Other sources reported that amenities have at best a modest impact.  Rathbone 

(2006) stated that “amenities” did not materially affect the success of a park and ride 

lot:  responses from 30 public transportation agencies who were asked for 

characteristics that defined lot success indicated proximity to roadways, frequent (and 

fast) transit service, and proximity to residential areas.  The same survey results noted 

characteristics that improved some individual lots, such as capacity, presence of 

amenities, and whether parking was charged, but the author emphasized these were 

lesser than the role of “total travel time and convenience.”  Similar results were noted 

in the Northern Virginia District except that one amenity (lighting) was found to 

matter.  BMI et al. (2003) assessed the effect of nine factors on the ratio of demand to 

capacity at park and ride lots in VDOT’s Northern Virginia District:  ownership; 

lighting; a phone being available; existence of bus service; bus shelters; connection to 

a bicycle route; the availability of “bike racks, bike lockers, or other amenities”; 

sidewalks; and being within one-fourth mile of an HOV lane.  Based on the Wilcoxon 

rank test and a significance threshold of p = 0.05, only three of the nine attributes 

affected the ratio of demand to capacity:  bus service, HOV lanes within one-fourth 

mile, and lighting.  

 

Models Are Not Usually Directly Transferrable 

 

The findings of Nungesser and Ledbetter (1987) and Spillar (1997) explained the 

difficulty of transferring models directly.  The research team was able to test the latter approach 

because of its similarity to data available in VDOT’s Northern Virginia District.  Spillar (1997) 

had considered eight variables in the development of models for King County:  the seven 

variables shown in Table 1 and an eighth variable that accounted for the presence of midday 

transit service at the lot.  The research team then compared the correlation matrix between the 

independent variables that Spillar (1997) reported to the correlation matrix between similar 

independent variables used in the Northern Virginia District.  In most cases, the results differed 

substantially; for instance, a fairly strong correlation between buses and population was noted for 

the Seattle data (0.614) compared to a fairly weak correlation in the Northern Virginia District 

(-0.083); by contrast, Virginia had a strong correlation between the number of adjacent lots 

within a 50% market area of the lot and the population (0.846), whereas Seattle had a weak 

correlation between these two variables (0.107). 

 

Implications of the Literature Review  

  

The literature helped identify candidate variables; for example, the aforementioned work 

by Rathbone (2006) suggested that one could consider several variables:  access to highways, 

express lanes, or transit; presence of severe congestion; distance to homes; and distance to the 

CBD, the cost of parking, and safety.  The fact that some variables were cited by multiple 

sources also led to their initial inclusion in the models; proximity to roadways was noted both in 

a comprehensive literature review by CTC and Associates (2010) and Rathbone (2006).   
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Table 1. Comparison of Correlation Coefficients for Seattle (top line of each row) and for Park and Ride Lots 

in the Northern Virginia District (bottom line of each row)  

  

Buses 

 

Freeway 

Adjacent 

Lots 

 

Population 

CarCost / 

TranCost 

 

DistToCBD 

Transit 

Speed 

Busesa 1.000  

1.000 

      

Freewayb 0.238  

-0.206 

1.000  

1.000 

     

Adjacent  

Lotsc 

0.156  

-0.016 

0.254 

-0.442 

1.000  

1.000 

    

Populationd 0.614   

-0.083 

0.013 

-0.404 

0.107 

0.846 

1.000  

1.000 

   

CarCost /  

TranCoste 

0.115   

-0.498 

-0.096 

0.474 

-0.211 

-0.372 

-0.034 

-0.235 

1.000  

1.000 

  

DistToCBD f -0.142  

-0.566 

-0.011 

0.460 

-0.309 

-0.238 

-0.331 

-0.085 

0.822 

0.916 

1.000  

1.000 

 

Transit 

Speedg 

0.083  

-0.047 

0.080 

0.287 

-0.160 

0.073 

-0.058 

0.042 

0.796 

-0.046 

0.649 

-0.042 

1.000  

1.000 
a Number of AM peak buses whose destination is the central business district (CBD). 
b Boolean variable to incorporate proximity to freeway (straight-line distance in miles from the lot to the nearest 

interstate access point). 
c Number of adjacent lots observed in the 50th-percentile market area of the lot (the number of independent park and 

ride lots that are within  the 2.5-mile radius of the designated park and ride lot). 
d Total population in the 50th-percentile market area of the lot (the sum of the population for the portions of the 

block group that fell within a 2.5-mile buffer of the designated park and ride lot. 
e Ratio of auto operating costs to transit costs (the time of auto operating divided by the time of transit). 
f Straight-line distance between the lot and the CBD. 
g Fastest transit schedule time between the lot  and the CBD divided by the straight-line distance between the lot and 

the CBD where transit times were estimated using Google Maps. 

 

RSG (2015) suggested that commuting patterns could be used; the authors examined 

origins and destinations based on longitudinal employment household dynamics data.  A similar 

suggestion from the TRP led the research team to use the Census-based “OnTheMap” data (U.S. 

Census Bureau, 2020b).  Thus, a large number of variables (i.e., 78, as shown in the Appendix) 

were considered in the development of Virginia-specific models. 

 

The aforementioned studies provided a basis for understanding the types of variables that 

could influence demand; they also suggested two enhancements that further work might add to 

the state of the practice.  One enhancement is informative:  To what extent, if any, do additional 

amenities beyond time, cost, and convenience influence demand?  The work by Rathbone (2006) 

and the earlier VDOT work (BMI et al., 2003) suggested that the answer is relatively little, 

although Bos et al. (2004) and Shirgoakar and Deakin (2005) suggested that amenities could 

matter in specific situations.  Vincent (2007) suggested that safety was substantial, where 

patrolling a lot could increase occupancy by 64 (compared to an average occupancy of 185) for 

stations at a rail line in New Zealand—but the same study found that lighting did not have an 

impact, in contrast to the study by BMI et al. (2003), which found that lighting was the sole lot 

amenity that affected occupancy at park and ride lots in the Northern Virginia District (the other 

variables were bus service and HOV proximity).  Answering this question might require the use 

of different models for different lots, just as Cherrington et al. (2017) and Beattie (2014) had 

reported when considering catchment areas.   
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The other enhancement is empirical:  When one develops a model based on a particular 

dataset, what is the expected accuracy when this model is applied to a different dataset?  The 

research team is aware of only one study that performed such an analysis:  the King County work 

by Spillar (1997). 

 

PURPOSE AND SCOPE 

 

The purpose of this study was to develop models for forecasting occupancy (the number 

of used spaces) at Virginia park and ride lots.  The study had three objectives:  (1) to identify the 

variables that explain variation in occupancy at Virginia lots, (2) to quantify the accuracy of 

these models when applied to a dataset different from the one on which the models were 

developed; and (3) to demonstrate how to implement these models to forecast demand at both 

proposed lots and existing lots where some key attribute is expected to change in the future. 

 

The scope of this study was limited in two ways.  First, the models were based on 2018 

lot occupancy and capacities provided by the VDOT Transportation Mobility Planning Division. 

These are collected every 1 to 2 years and represent a single site visit on one particular day such 

that weekly or daily variation is not captured.  Second, candidate variables were constrained to 

publicly available datasets describing four sets of attributes:  traffic, the facility, land use, and the 

social and economic composition of the population near the lot.  As shown in the Appendix, 

traffic data represent volumes, indicators of congestion, and peaking (e.g., how the peak hour 

volume compares to the 24-hour volume).  Land use data represent the location of the lot relative 

to employment sites, interstates, and other lots and characteristics of commuters:  How far do 

they live from the lot, how far do they travel to work, and what mode of transportation do they 

use?  Socioeconomic information represents characteristics of people near the lot (population, 

income, relative share of income spent on rent) and number of jobs near the lot.  Facility 

attributes describe the lot itself, such as signing, lighting, the cost to park at the lot, and transit 

service.  The 78 variables in the Appendix do not include disaggregate customer information, 

such as the income of user x, whether user y thinks amenities such as lighting are critical to the 

lot’s attractiveness, or the factors that would cause nonuser z to use the lot. 

 

 

METHODS 

 

Four major tasks were undertaken to accomplish the study objectives:  

 

1. Determine candidate variables. 

2. Develop successively complex models.  

3. Evaluate models. 

4. Repeat analysis based on guidance from the TRP. 
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Determine Candidate Variables 

 

Through several discussions with the TRP, 79 candidate variables related to each park 

and ride lot were identified, and supporting data were obtained.  These variables were 

categorized as being related to the facility, traffic, land use, and demographics.  

 

Facility Variables 

 

The TRP provided a database of facility attributes for each park and ride lot such as the 

lot name, latitude and longitude, total number of parking spaces, and number of occupied 

parking spaces.  Seven key facility-related variables were directly extracted from this database; 

the variable name is shown in brackets: 

 

1. Whether transit service is provided to the lot, including cases where passengers might 

need to cross a street from the lot to reach the transit stop [TransitServiceAvailable 

where a value of 1 means yes]. 

 

2. Whether overnight parking is allowed [OvernightParkingAllowed, 1 means yes]. 

 

3. Number of transit lines serving the lot [NuofTranServicePP].  This includes bus, light 

rail, and heavy rail but does not incorporate frequency of service or ridership. 

 

4. Whether the parking lot is lit [Lighting, 1 means yes]. 

 

5. Condition of the sign [SignCondition = 0 if no sign; 1 if poor; 2 if fair; 3 if good; 4 if 

very good]. 

 

6. Whether there is a fee to park in the lot [CostToPark, 1 means yes]. 

 

7. Whether the parking lot has covered bicycle parking facilities [BikeParkingisCovered 

where 1 means yes and 0 means no]. 

 

As noted in Table A6 in the Appendix, an additional 10 variables were considered but 

generally not used in the final modeling because they did not show promise—with one 

exception:  the number of bicycle parking spaces was found to be useful in the Northern Virginia 

District model.   

 

 For 296 of the 297 lots, the VDOT database provided occupancy information.  For 1 of 

the 297 lots (i.e., the Wiehle-Reston East Metro Station Garage), that database showed a value of 

0, which the TRP noted was incorrect, especially given the lot’s capacity of 2,300.  For that lot 

only, another source was used:  a web application developed by WMATA (2020) gave the 

“average daily parking transactions” for 2019 where Saturdays, Sundays, and holidays are 

excluded. 

 

  



12 

 

Traffic Variables 

 

Traffic variables were in some cases provided by the TRP and in other cases extracted 

from VDOT’s Pathways for Planning application (VDOT, 2019b, 2019c, 2019d, 2020a) and 

usually processed using ArcGIS Pro software (Version 2.4).  In discussions with the TRP, a 2.5-

mile radius emanating from the park and ride lot was chosen for obtaining 11 of these 12 traffic 

variables (Figure 2) given that previous work, such as that by Spillar (1997) and Nelson\Nygaard 

Consulting Associates Inc. (2012), had reported that that this ratio represented a substantial 

portion of the lot’s users, and by extension, that one would expect traffic characteristics within 

this radius to be affected by park and ride lot demand.  The TRP suggested that this radius might 

not be appropriate, however, for non-traffic variables, and thus other radii, as discussed later, 

were used for those other variables. 

 

 

 
Figure 2. Example of Capturing Traffic Data With a 2.5-mile Radius Catchment Area 
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Twelve traffic-related variables were collected (variables are shown in brackets): 

 

1. Mean value of 2018 ADT for roads within 2.5 miles of the lot [Average ADT]. 

 

2. Highest 2018 ADT for all roads within 2.5 miles of the lot [MAX ADT]. 

 

3. Sum of all 2018 ADT for roads within 2.5 miles of the lot [Sum ADT]. 

 

4. 2018 ADT on the road providing a direct entrance to the lot.  If there are two or more 

entrances, then this variable is the average of the ADTs [Closest ADT]. 

 

5. Mean ratio of 2018 volume (v) to capacity (c) for roads within 2.5 miles of the lot 

[V/C]. 

 

6. Mean 2018 peak hour factor (PHF) of roads within 2.5 miles of the lot [PHFaverage]. 
 

7. PHF for the closest road and for the road within 2.5 miles with the highest ADT 

[PHFclosest, PHFmax]. 
 

8. Ratio of the peak hour volume to the ADT, commonly known as the K-factor, for the 

closest road, for the road within 2.5 miles with the highest ADT, and the mean value 

for all roads within 2.5 miles [Kclosest, Kmax, Kaverage].   
 

9. Peak hour expansion factor (PHEF), provided by Mobayed (2020a), a surrogate for 

regional congestion indicating the length of time that the “peak period” (VDOT, 

2020) lasts for interstates and arterial facilities.  PHEF is determined by capturing the 

closest link with a PHEF value (regardless of the distance from the lot), given that 

PHEF is available for only some links in contrast to other variables [PHEF].  Thus, 

unlike the previous 11 traffic variables, PHEF was not related to the 2.5-mile radius. 
 

Garber and Hoel (2009) distinguished between annual average daily traffic (AADT) and 

ADT in that that former is based on a continuous count station where volumes are sampled 24 

hours per day 365 days per year, and the latter is based on a shorter-term count, such as a 48-

hour count.  In practice, however, as VDOT has very few continuous count stations, most annual 

traffic volumes reported by VDOT as AADT are ADTs that were then converted to an annual 

estimate based on the appropriate seasonal adjustment factors.  This report uses the term ADT to 

denote a typical 24-hour volume.  A map of 24-hour traffic count data (ADT) is available in the 

subsection of VDOT’s Pathways for Planning application titled Transportation Planning Data 

(VDOT, 2019c). 

 

Land Use Variables 

 

Land use data were extracted from the American Community Survey (ACS) (Mobayed, 

2020b; U.S. Census Bureau, 2020a); ancillary Census mapping applications (U.S. Census 

Bureau, 2020b); and employment centers used for VTrans, Virginia’s Transportation Plan (CDM 

Smith, 2020).  Most land use variables were collected 3 times for each lot, reflecting 
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characteristics within a 2.5-mile radius, a 5-mile radius, and a 10-mile radius of the lot (see 

Figure 3).  One reason for considering these different radii is that catchment areas may not be 

uniform—the 2.5 mile value is a good starting point, but others have defined different sizes 

(Nordstrom and Christiansen, 1981; Vincent, 2007). 

 

  Some data, such as Census blocks, block groups, and tracts, are in the form of polygons 

where a single block group might be partially, but not entirely, within the catchment area (see 

Figure 4).  Additional GIS processing was performed to ensure that the estimated population 

outside the catchment area was not used.  For example, if two tracts have 30 carpoolers and 100 

carpoolers and the catchment area includes one-half of the first tract and one-third of the second 

tract, the number of carpoolers is estimated as 48 based on these two tracts (see Eq. 1). 

 

30 Carpoolers (1/2) + 100 Carpoolers (1/3) = 48      [Eq. 1] 

 

Thirty-four land use variables were collected (variables are shown in brackets): 

 

1. Distance in miles to the next lot [DTNearestP]. 

 

2. Number of independent lots within the 2.5-mile buffer of the lot [NuofAdjLot]. 

 

3. The straight-line distance in miles from the lot to the nearest interstate access point 

[ProximityToIAP] (Mobayed, 2020c).  

 

4. The straight-line distance in miles from the lot to the nearest express lanes 

[ProxToEL] (Mobayed, 2020d; 2020e).  The straight-line distance is a relative 

indicator.  For example, for the three park and ride lots shown in Figure 5, the 

straight-line distances to the Express Lanes access point (at the right of the figure) are 

all shorter than the travel path motorists will follow.  In this case, although the 

straight-line distance from the Dunn Loring-Merrifield Station Metro Park and Ride 

lot to the access point for the express lanes is 2.3 miles, a motorist leaving that lot and 

seeking to access the express lanes will travel a longer distance, heading east on I-66 

and then heading south on I-495.  In practice, therefore, the variable “straight-line 

distance in miles from the lot to the nearest Express Lanes” is a surrogate for 

proximity, conveying the critical information that Dunn-Loring is considerably closer 

to the Express Lanes access point than Kutner Park. 
 

5. The average of the area-weighted median commute times for all Census tracts within 

the catchment area, where for radii of 2.5, 5.0, and 10.0 miles the variables are 

[CommuteTime2], [CommuteTime5], and [CommuteTime10]. 

 

6. The average number of work trip carpoolers from all Census tracts within the 

catchment area for sizes of 2.5 miles ([Carpoolers2]), 5 miles ([Carpoolers5]), and 10 

miles ([Carpoolers10]). 
 

7. The average number of transit riders from all Census tracts within the catchment area 

[TransitRiders2], [TransitRiders5], [TransitRiders10]. 
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Figure 3. Example of Three Catchment Areas for the Limestone Road Park and Ride Lot 
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Figure 4. Example of Capturing Population With a 2.5-mile Radius Catchment Area 

 

8. Distance to the nearest block group with at least 5,000 employees 

[DIST_BG_BigEmp]. 

 

9. Distances to the four nearest major employment centers, defined as being 1 of 

379 VTrans employment centers (CDM Smith, 2020) and being within a 

block group of at least 10,000 employees [Dist_M1], [Dist_M2], [Dist_M3], 

[Dist_M4]. 

 

10. The sum of the square root of the distances to the four closest employment 

centers [Dist_Weight]. 

 

11. Number of commuters within the catchment area having jobs, jobs less than 

10 miles away, jobs between 10 and 24 miles away, jobs between 25 and 50 

miles away, and jobs more than 50 miles away.  Such data can be derived 

from the Census mapping application OnTheMap (U.S. Census Bureau, 

2020b) with some additional GIS processing.  For example, Table 2 shows 

that there are 69,902 commuters (based on 2017 data) within 2.5 miles of the 

Dumbarton Oaks Park and Ride Lot.  About one-half (33,925) have a 

commute of less than 10 miles, and slightly less than one-fifth (14,468) have a 

commute of more than 50 miles.   
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Figure 5. For the Variable “ProxToEL” (Straight-Line Distance in Miles From the Lot to the Nearest Express 

Lanes), Dunn Loring Has a Lower Value Than Kutner Park 

 

Table 2. Number of Commuters With Jobs Within Various Radii of the Dumbarton Oaks Park and Ride Lota 

Radius (miles) Less Than 10 Miles 10-24 Miles 25-50 Miles More Than 50 Miles Total 

2.5 33,925 16,845 4,664 14,468 69,902 

5 75,681 36,903 10,061 30,118 152,763 

10 195,570 112,061 26,173 75,862 409,666 
a [Rad2JobsTot], [Rad2JobsLT10Mi], [Rad2Jobs10to24Mi], [Rad2Jobs25to50Mi], [Rad2JobsGT50Mi], 

[Rad5JobsTot], [Rad5JobsLT10Mi], [Rad5Jobs10to24Mi], [Rad5Jobs25to50Mi], [Rad5JobsGT50Mi], 

[Rad10JobsTot], [Rad10JobsLT10Mi], [Rad10Jobs10to24Mi], [Rad10Jobs25to50Mi], [Rad10JobsGT50Mi]. 

 

Demographic Variables 

 

 As was the case with land use variables, demographic variables were developed for 

catchment radii of 2.5, 5.0, and 10.0 miles.  Extensive GIS processing was often used to capture 

better each variable with respect to the park and ride lot.  For example, if the area within 2.5 

miles of a park and ride lot had just two tracts of 50,000 square feet and 100,000 square feet and 

the commute time in the former tract had an average value of 30 minutes and the latter had an 

average value of 40 minutes, the weighted commute time is about 36.7 minutes (Eq. 2).  

 

(50,000 ft2 * 30 min + 100,000 ft2 * 40 min)/(50,000 ft2 + 100,000 ft2) = 36.7 [Eq. 2]  

 

Twenty-five demographic variables were collected (variables are shown in brackets): 

 

 Population provided by Ling (2018) [POP2.5], [POP5], [POP10].  

 

 Population density computed as people per square mile [PopDen] for the block group 

in which the lot is located.  

 

 Employment (e.g., jobs) in the catchment area (Ling, 2018) [EMP2.5], [EMP5], 

[EMP10].  
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 The median monthly rent multiplied by 12 and divided by median household income 

(Mobayed, 2020b, U.S. Census Bureau, 2020a):  [RentOverAllIncome2], 

[RentOverAllIncome5], [RentOverAllIncome10]. 

 

 Average percent of renters’ household income spent on rent: 

[AvgPctOfRentIncomeOnRent2], [AvgPctOfRentIncomeOnRent5], 

[AvgPctOfRentIncomeOnRent10]. 

 

 Sum of minority, poverty, limited English population (LEP), and disabled populations 

from all Census tracts within the buffered area (Ling, 2018).  With radii of 2.5, 5.0, 

and 10.0 miles, the 12 variables are [MinorityPop2], [PovertyPOP2], [LEPPop2], 

[EligDisadvPop2], [MinorityPop5], [PovertyPop5], [LEPPop5], [EligDisadvPop5], 

[MinorityPop10], [PovertyPop10], [LEPPop10], and [EligDisadvPop10].  VDOT 

asked that these variables not be used in the models, however, if at all possible, 

explaining that their inclusion might exacerbate inequity.  For example, if a model 

showed that a higher value of LEP was associated with reduced demand, such a 

model could lead to VDOT not building lots in locations where such populations 

were high. 

 

Develop Successively Complex Models 

 

 Five categories of models were developed:  

 

1. existing diversion model 

2. recalibrated diversion models 

3. generalized ADT models 

4. linear regression models 

5. nonlinear regression models. 

 

Existing Diversion Model 

 

The initial approach for estimating occupancy was based almost entirely on the approach 

used by FDOT (2012) with one exception:  FDOT (2012) noted that a diversion factor of 1% 

should be used for “secondary” facilities.  To make this application consistent at the 297 lots in 

Virginia, the research team initially defined such “secondary” facilities as being represented by 

the variable VprimeK, which is the peak period traffic on the facility having the highest ADT 

within 2.5 miles of the lot.  Generally, the model assumes no change in travel patterns:  the only 

users are those who pass the lot during the normal travel path, such that a road with no volume 

will yield a park and ride lot that has no occupancy.  The model is defined in Equation 3: 

 

Occupancy = a (VpeakK) + b (VprimeK)      [Eq. 3] 

 

where 

     

VpeakK = total peak-period traffic on the adjacent facility or facilities, where adjacent 

means there is an entrance to the lot 
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VprimeK = peak period traffic on the prime facility, which is the facility within the 2.5-

mile radius that has the highest ADT 

 

a, b = diversion factors of 0.03 and 0.01 for peak and prime traffic, respectively  

 

VpeakK = ADTpeak * K * D * Design period 

 

VprimeK = ADTprime * K * D * Design period 

 

ADTpeak = two-way ADT for the adjacent roadway facility 

 

K = peak hour percentage 

 

D = peak hour directional distribution of traffic 

 

Design period = design period, the pronounced peak traffic period 

 

ADTprime = two-way ADT for the prime roadway facility. 

 

  FDOT (2012) uses typical K-values (see Table 3), whereas the research team used 

facility-specific K-values (VDOT, 2019d).  Although the aforementioned source is named for 

V/C ratios, it is a geographic layer that contains K-factors as a separate attribute.  For the design 

period, Table 4 provides lookup values, where a higher traffic volume is correlated with a longer 

peak period.  FDOT uses values of a = 0.03 and b = 0.01, representing a capture of 3% on 

adjacent facilities and a capture of 1% for the largest facility within 2.5 miles of the lot, where a 

and b were based on large cities in Texas (FDOT, 2012).  FDOT also suggested that default 

values for the design period, K, and D may be used in lieu of site-specific data (see Tables 3 and 

4) if such data are not available.  Although the PHFs shown in Table 3 were not needed for the 

existing diversion model, they are provided here as they were useful for modifying that model 

later. 

 
Table 3. Typical K-Factors, D-Factors, and PHFs 

Roadway Class K D PHF 

Urban Freeway/Expressway 0.092 0.52 0.95 

Urban Major and Minor Arterials 0.097 0.52 0.95 

Urban Multi-Lane Highways 0.094 0.52 0.92 

Transitioning Freeway/Expressway 0.094 0.52 0.92 

Transitioning Major and Minor Arterials 0.097 0.52 0.88 

Transitioning Multi-Lane Highways 0.097 0.52 0.88 

Rural Freeway/Expressway 0.103 0.52 0.92 

Rural Major and Minor Arterials 0.097 0.52 0.88 

Rural Multi-Lane Highways 0.097 0.52 0.88 

                                         PHF = peak hour factor. 
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Table 4. Suggested Design Periods 

Average Daily 

Traffic 

 

Design Period 

Above 50,000 60 min 

35,000-49,999 45 min 

Below 35,000 30 min 

 

Recalibrated Diversion Model 

 

The recalibrated diversion model presumes that parking demand is a direct function of 

the amount of traffic on roadways adjacent to the park and ride lot as was the case with the 

existing diversion model (FDOT, 2012).  However, there are two differences when this is 

calibrated for Virginia.  First, Virginia-specific values of diversion factors a and b are obtained 

where the values of a and b minimize the root mean square error (RMSE) given in Equation 4, 

where n is the sample size.  Although the SPSS regression software tool was used to determine a 

and b, the research team did not use a criterion of statistical significance; rather, the independent 

variables VpeakK and VprimeK were always used and were never rejected, regardless of statistical 

significance). 

 

RMSE = ∑ √
1

n
(Yi observed − Yi forecast)2n

i        [Eq. 4]  

 

  Second, two different approaches for estimating the peak hour volume were tested:  one 

used the ADT multiplied by the K-factor, and one used the ADT multiplied by the PHF.  Since 

the latter is the hourly volume during the maximum-volume hour of the day divided by the peak 

15-minute flow rate within the peak hour, the product of (ADT)(PHF) yields a value that is 

typically between 88% and 95% of the ADT.  Thus, even when there is a large variation in traffic 

volume during the peak hour, the product of (ADT)(PHF) yields a value that is similar to the 

ADT.  By contrast, the product of (ADT)(K-factor) yields a value that is much smaller than the 

ADT. 

The recalibrated diversion model requires the ADT on the adjacent roadways of the 

facility (where adjacent roadways each provide an entrance to the lot), the maximum ADT of all 

roadways within a 2.5-mile buffer, and the PHF and peak hour K-factor for the selected roads.  

Figure 6 illustrates such data for a hypothetical new lot where the ADT for the roads in red 

(shown in the large image) will yield the peak variable (assuming the lot will have three 

entrances) and those roads in white (shown in the small image) will yield the prime variable. 

 

Similar to the existing diversion model, the recalibrated diversion model takes the form 

of either Equation 5 or Equation 6 where  

 

Occupancy = a (VpeakK) + b (VprimeK)      [Eq. 5]  

 

Occupancy = a (VpeakPHF) + b (VprimePHF)      [Eq. 6]  
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Figure 6. Three Adjacent Roads That Comprise VPeakK (red) and Candidate Roads From Which the Highest 

Volume (VprimeK) Will Be Selected (Red or White) 

 

This demand function has no intercept, just as the existing diversion model does not have 

an intercept.  Because demand is a function of ADT, the model in Equations 7 through 10 

presumes that an ADT of 0 means the parking lot occupancy should be 0. 

 

VpeakK = ADTadjacent × K × DP ÷ 60      [Eq. 7]  

 

VpeakPHF = ADTadjacent × PHF × DP ÷ 60      [Eq. 8]  

 

VprimeK = Max ADT × K × DP ÷ 60      [Eq. 9]  

 

VprimePHF = Max ADT × PHF × DP ÷ 60               [Eq. 10] 

  

where 

 

VpeakK = peak period traffic on the adjacent roadway (based on a K-factor) 

 

VpeakPHF = peak period traffic on the adjacent roadway (based on a PHF) 

 

ADTadjacent = average daily traffic for the adjacent roadway 

 

K = K-factor for the adjacent roadway 

 

PHF = peak hour factor for the adjacent roadway 
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DP = design period (Table 4) 

 

VprimeK = peak period traffic on the prime roadway (based on a K-factor) 

 

VprimePHF = peak period traffic on the prime roadway (based on a PHF) 

 

Max ADT = ADT for the roadway that has the maximum ADT in the 2.5-mile catchment 

area. 
 

For locations with complete data, the design period is based on values from Table 4, and 

roadway-specific K-factors and PHFs are determined from VDOT’s Pathways for Planning 

(VDOT, 2019c).  For locations with incomplete data, the design period, K-factor, and PHF may 

be chosen based solely on Tables 3 and 4 (FDOT, 2012).  
 

Table 4 shows a suggested design period where the values were initially obtained from 

FDOT (2012); however, these values do not necessarily represent a particular peak period. 

Rather, this design period takes place “during the peak period when a facility experiences the 

highest traffic flows” (FDOT, 2012); the same source noted that although the values shown in 

Table 4 may be used, it is also possible to determine the length of this design period from 

observations of traffic flow.  Presumably, therefore, such a design period could be inferred from 

other data sources; for example, if a roadway’s segment planning time index (the 95th percentile 

travel time divided by the free flow travel time) is extremely high for 45 minutes, then 45 

minutes would be the value of the design period.  FDOT (2012) clarified that the design period, 

therefore, is an indication of the length of time during which a roadway is congested:   

 
The design period concept supports the theory that Park-and-Ride use is related to congestion 

levels, and is supported by observations showing arrivals at Park-and-Ride facilities during a well-

defined time period. This postulates that motorists traveling during times of greatest congestion 

will have a greater propensity to utilize Park-and-Ride facilities. 

 

Generalized ADT Models 

 

Generalized ADT models are similar to the recalibrated diversion models in that some 

commuters who use a lot during their normal routes will arrive at these lots from adjacent streets.  

There are two ways to represent such adjacent traffic:  the facility with the highest ADT within a 

2.5-mile radius of the lot, and the ADT for the facility or facilities providing direct access to the 

lot.   

 

However, four key changes were made for these models compared to those in the 

previous section.  First, two other ways of representing traffic were also considered:—the 

average ADT for all facilities within 2.5 miles of the lot and the sum of these ADTs.  Second, 

assumptions pertaining to the peak hour, such as the K-factor, the PHF, and the design period, 

were removed in case these extra values were not providing additional information.  Third, in 

recognition that park and ride lot demand might be explained by factors other than traffic 

demand, an intercept was added.  Fourth, a criterion of variables being statistically significant 

was added:  only independent variables with p < 0.05 were included. 
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Four types of ADT models were considered (Eqs. 11-14): 

 

Occupancy = α × Average ADT + β                [Eq. 11]  

 

Occupancy = α × Sum ADT + β                [Eq. 12]  

 

Occupancy = α × Max ADT + β                [Eq. 13]  

 

Occupancy = α × Closest ADT + β                [Eq. 14]  

 

 The first three models were based on all roads within 2.5 miles of the facility, and the 

fourth model was based on the road or roads where the lot has a direct entrance.  For example, a 

lot with two entrances may be considered.  For this lot, one entrance is to a facility with an ADT 

of 1,000 and one entrance is to a facility with an ADT of 1,500.  Further, a road with an ADT of 

1,300 is located 2 miles away from the lot and there are no other roads within 2.5 miles of the 

lot.  For this lot, therefore, the average ADT is 1,267; the sum ADT is 3,800; and the max ADT 

is 1,500.  Because there are two roads that are closest to the facility (with ADTs of 1,000 and 

1,500), the mean of these two values, i.e., 1,250, is chosen as the closest ADT. 

 

Linear Regression Models 

 

Regression methods are generally used to develop models from “unplanned 

experiments”—i.e., situations where the analyst does not have an ability to alter the independent 

variables.  For instance, one cannot choose to have the number of lots divided equally into urban 

and rural areas; rather, one must work with data from the uneven number of rural and urban lots 

in Virginia.  It was expected that grouping the lots into similar geographical markets would be 

productive (e.g., lots in one part of Virginia might be attractive because they enable carpooling 

for long distance commutes, whereas lots in another part of Virginia might be attractive because 

they provide access to transit service).  However, it was not immediately obvious how to define a 

market.  Thus, three different geographic boundaries were used for developing regression 

models:  VDOT district, MPO, and PDC.  All 78 input variables were considered, and stepwise 

linear regression via the SPSS software package was used to develop initial models where after 

identifying the variable that yields the highest adjusted R2 is identified, the stepwise process adds 

more variables if those variables are statistically significant and increase the adjusted R2 (Geert 

van den Berg, 2020). 

 

There were some cases where additional experimentation was used to improve the model.  

For example, in the high population density portion of the Fredericksburg District, a model was 

initially developed from stepwise regression that showed a large constant along with two 

independent variables (the number of transit riders within 2.5 miles of the lot and the total 

population within 5 miles of the lot).  Dropping these two variables enabled development of 

another model that included a much lower constant and two different independent variables (the 

number of persons below the poverty line living within 2.5 miles of the lot and the LEP within 5 

miles of the lot).  As another example, because some of the initial models contained only facility-

specific variables, the research team developed a different model by dropping some of these 

facility-specific variables.  For instance, because the number of transit lines serving the lot was 
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already included, the research team sought to drop a related binary variable:  presence of transit 

service. 

  

Nonlinear Regression Models  

 

If they provide a good fit to the data, linear models are generally preferable to nonlinear 

models for several reasons:  the additive impacts of additional variables are more easily 

understood, the calibration process is more straightforward, the impact of the variables is easier 

to interpret, and incorrect assumptions about future conditions (e.g., an error in the forecast of 

ADT) are less problematic.  However, for one district where all other modeling attempts did not 

yield acceptable performance, the Northern Virginia District with its 108 park and ride lots, the 

research team sought to improve the fit with a nonlinear model where the dependent variable was 

the square root of the occupancy, as suggested elsewhere (Montgomery, 2001).  The research 

team further evaluated how removing 21 large parking lots mostly serving the VRE or the Metro 

system, which might have unique characteristics beyond the scope of the study, would affect 

model performance.  

 

Evaluate Models 

 

Each model was built twice.  First, the final form of the model was determined by using 

the entire dataset.  This gave the coefficient of determination, the standard error of the estimate, 

and the residual plots.  An example of such a model is Equation 15, developed for the park and 

ride lots in the Richmond Regional PDC.  Then, at random, 30% of the observations were 

removed, the model was recalibrated based on the remaining 70% of observations (an example is 

Eq. 16), and the accuracy of the model was tested on the remaining 30% of the observations.   

 

Occupancy = 6.361 + 0.006 * Average ADT + 152.161 * PHEF            [Eq. 15] 

 

Occupancy = -1.516 + 0.007 * Average ADT + 125.554 * PHEF            [Eq. 16] 

 

Although Equations 15 and 16 are similar, there were other cases where the 70% 

calibrated equation and the full model were very different, as shown in Equations 17 and 18 for 

the Lynchburg District. 

 

Occupancy = -1.472 + 0.475 * PHEF + 0.00192*Average ADT + 0.000049 * POP5 

          [Eq. 17] 

 

Occupancy = -9.191 + 1.108 * PHEF - 0.000296*Average ADT + 0.000459 * POP5 

          [Eq. 18] 

 

Thus, the use of the final form of the model (e.g., Eq. 15 or 17) and the training model 

(e.g., Eq. 16 or 18) yielded six criteria for evaluating model performance. 
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Criterion 1.  Relatively Large Coefficient of Determination  

 

The coefficient of determination, also known as an adjusted R2, indicates the percentage 

of variation in occupancy explained by the independent variables; for example, a value of 0.496 

means that 49.6% of the variation in occupancy is explained by the independent variables such 

that the highest value possible is 100%.  The word “adjusted” signifies that a penalty is applied 

as the number of variables (q) in the model increases (see Eq. 19).  This metric is based on the 

entire dataset.  

 

1 −
∑ (Yi observed − Yi forecast)2  

1

(n−q−1)
n
i

∑ (Yi observed − Yi observed̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )2   
1

(n−1)
 n

i

                [Eq. 19] 

 

Generally if all other indicators of model performance were equal, one would prefer that 

the chosen model have a higher adjusted R2 than other candidate models; Martin (2017) warned 

against using this as a sole criterion.  There is no established threshold at which an R2 becomes 

unacceptable, although other park and ride studies suggested that an R2 of 0.7 was “relatively 

high” (Nungesser and Ledbetter, 1987), with Vincent (2007) generally reporting models that had 

an R2 of 0.8.  For a set of fairly homogenous lots, Peng and Mohamad (2005) reported values of 

0.9.   

The research team generally sought to have a coefficient of determination of at least 0.5, 

with higher values being preferable. 

 

Criterion 2.  Minimize the Standard Error of the Estimate 

 

The standard error of the estimate, henceforth simply “standard error,” is computed by 

squaring the difference between predicted and actual values, dividing by the number of samples, 

taking the square root (Lane, n.d.), and then dividing by the degrees of freedom (the sample size 

minus the number of independent variables) such that the standard error reflects the “precision” 

(Frost, n.d.) of the model in the units of occupancy.  This standard error is thus roughly 

equivalent to the RMSE except the denominator is the number of samples minus the number of 

independent variables.  Standard error is based on the entire dataset. 

 

There is not a particular threshold at which the standard error of a candidate model 

becomes unacceptable.  However, the research team generally sought to develop models where 

standard error was less than one-half the mean occupancy.  

 

Criterion 3.  Find the Acceptable Size of the Intercept 

 

The size of the intercept compared to the mean occupancy indicates the amount of 

variability explained by the independent variables.  For example, for a model where the mean 

occupancy is 10 and the intercept is 9, the independent variables are simply not offering much 

explanatory power.   

 

There is not a particular threshold at which an intercept is too large to be useful.  

However, the research team generally sought to develop models where the intercept was less 

than one-half the mean occupancy.  
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Criterion 4.  Keep the Mean Testing Error Small 

 

The mean testing error is the average of the absolute value of the difference between the 

forecast and the observed value.  Unlike the preceding three metrics, the mean testing error is not 

based on the full dataset.  Rather, the mean error indicates how the model performs on a separate 

set of data not used to build the model—that is, 70% of the observations calibrate the model and 

that model is tested on the remaining 30% of observations.   

 

There is not a particular threshold at which the mean testing error becomes intolerable.  

For larger lots, the research team generally sought to develop models where testing error was less 

than one-half the mean occupancy.  For smaller lots, however, larger errors on a percentage basis 

were generally tolerated. 

 

Criterion 5.  Logical and Equitable Independent Variables 

 

The utility of the independent variables depends on two factors:  whether the independent 

variables show logical signs, and whether those independent variables can be used for decision 

making without adversely affecting equity?  An example of a model that fails for the first factor 

might be a model based solely on an intercept and some negative coefficient multiplied by the 

ADT of the adjacent street, as such a model suggests (contrary to previous experience) that 

higher ADT is correlated with lower occupancy.  An example of a model that fails for the second 

factor is a model showing a negative coefficient for the LEP near the lot, since such a model 

could lead eventually to a decision not to build or improve lots in areas with larger LEPs. 

 

Generally, this criterion was applied more strictly than the previous four in the sense that 

models that exhibited a potential equity issue were avoided where possible.  In some cases, 

modest deviations from this criterion were tolerated when the other candidate models failed in all 

other criteria. 

 

Criterion 6.  Lack of Bias  

 

Plots of the residuals (the difference between observed and forecast occupancy) may be 

inspected in order to assess if there is sign bias or nonconstant variance (Martin, 2017).  To 

detect sign bias, one can first divide the residual plots (see Figure 7) into rectangles ordered from 

left to right; blue was added in the figure to show these rectangles.  For example, in Figure 7 

(left), with regard to the horizontal axis only, the leftmost rectangle shows no points where the 

standardized predicted value is more than 2 standard deviations below the mean; the next 

rectangle shows five points where the standardized predicted value is between 1 and 2 standard 

deviations below the mean; and the rightmost rectangle shows one point where the standardized 

predicted value is more than 2 standard deviations above the mean.  If for each rectangle the 

mean of the points based on the vertical axis is close to zero, then the model is generally 

unbiased.  Figure 7 (left) suggests that the Bristol District model is unbiased as the residuals have 

a mean value that is relatively close to zero for each of the six rectangles.  By contrast, Figure 7 

(right) suggests that the Culpeper District model is biased as the residuals have an average value 

that is clearly above zero for the two  rectangles where standardized predicted values are 

between 0 and -2. 
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Figure 7. Homoscedastic Residual Plots That Unbiased (left) and Biased (right)   

 

To detect constant variance, Martin (2017) also suggested that the spread of the residuals 

should be the same in the same six rectangles such that their relative variation is similar.  In 

contrast to Figure 7 (left), the Salem District model in Figure 8 (left) shows that the relative 

variance of the residuals increases dramatically from the second leftmost rectangle (-2 to -1 

standardized predicted values) to the fourth rectangle (0 to 1 standardized predicted values).  

Similarly, Figure 8 (right) for the Fredericksburg District model also shows heteroscedasticity:  

except for the standardized predicted values between 1 and 2, the spread of the residuals 

increases for each rectangle as one moves from left to right.  

 

Although the detection of bias was not problematic, for datasets with a small sample size, 

visual inspection made determination of heteroscedasticity versus homoscedasticity difficult.  

For example, Figure 9 shows the Hampton Roads District model where no trend is evident based 

on these five residuals.  In those cases where there was was no clear trend (indicating the model 

is heteroscedastic), the model was characterized as homoscedastic. 
 

Figure 8. Heteroscedastic Residual Plots That Are Unbiased (left) and Biased (right)  

  

 



28 

 

 
Figure 9. Hampton Roads District Model’s Classification Is Unclear Because of the Small Number of Samples 

 

 The research team sought to avoid bias, generally preferring an unbiased model (with 

lower coefficient of determination) than a biased model with a higher coefficient of 

determination. 

 

Repeat Analysis Based on Guidance From the TRP 

 

 The identification of variables, development of models, and evaluation of models in the 

first three tasks were performed iteratively.  The TRP first asked that the research team 

experiment with applying the existing diversion model as used by FDOT (2012) beyond the 

initial two districts of Staunton and Richmond.  It was hoped that this model could be applicable 

to Virginia, as it had been used successfully in Florida, either in its original form or as a 

recalibrated diversion model.  Then, especially as the generalized ADT models, the linear 

regression models, and nonlinear regression models were pursued, the TRP helped identify 

potential data sources and alternative ways of computing these variables.   

 

For instance, the decision to use a polygon proportion method for summarizing Census 

data, the use of three different radii for demographic variables, and the consideration of major 

employment centers through six different variables that entailed GIS processing all arose through 

applying initial models, seeing poor performance, and working with the TRP to identify possible 

solutions.  The TRP also expressed a strong interest in the use of the models tailored to particular 

groups of lots, noting that in some regions, for instance, commute length by distance might be a 

key determinant but that this might not hold in other locations.  In particular, one approach used 

in the Northern Virginia District was to exclude lots that served rail systems and then subdivide 

the remaining lots into those that offered transit service and those that did not. 

 

 One particular decision was how park and ride lots should be aggregated for the 

development of models, as aggregating by VDOT district is not necessarily the best way to 

analyze these lots given diverse commuting characteristics.  Ultimately, four methods of 

aggregation were applied in an iterative fashion: 
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1. VDOT district 

2. MPO boundary 

3. PDCs 

4. population density. 

 

VDOT District Aggregation 

 

The top one-third of Table 5 lists the 297 park and ride lots as distributed through the 

nine VDOT districts (see Figure 10), where capacity is the total number of parking spaces and 

occupancy is the number of occupied parking spaces on the day of the year the survey was 

conducted.  For instance, the Bristol District has 29 lots, the largest of which has 80 spaces, 

although the mean lot size in the Bristol District is 26 spaces.  The highest occupancy at any lot 

in that district was 23 spaces, although the mean was just 8.  Table 5 shows variation by district:  

the mean lot capacity in the Lynchburg District was about one-tenth the mean lot capacity in the 

Fredericksburg District, which in turn was a bit more than one-half the capacity of the Northern 

Virginia District.  The mean occupancy in the Salem District was about one-third the mean 

occupancy in the Richmond District, which in turn was about one-third of the mean occupancy in 

the Northern Virginia District.  In short, the 297 lots had very different capacity and demand 

characteristics. 

 

MPO Boundary Aggregation 

 

The middle of Table 5 shows another way of aggregating some of the park and ride lots:  

by MPOs.  These MPO boundaries (see Figure 11) encompass about two-thirds of the park and 

ride lots (194 of 297), although only six of the MPOs have enough lots (at least four) to make 

them suitable for development of a model with multiple variables.  

 

PDC Boundary Aggregation 

 

Virginia’s 297 lots may also be categorized by PDC (shown in the bottom one-third of 

Table 5 and in Figure 12), although 2 of Virginia’s 21 PDCs (West Piedmont and Accomack-

Northampton, which are not shown) do not have any lots; 3 PDCs each have fewer than three 

lots such that modeling is not feasible (Central Virginia, Southside, and Commonwealth 

Regional Council); and 2 PDCs (Northern Neck and Crater) have three lots such that they are 

probably not reliable for testing purposes (since ideally one should set aside some lots for testing 

that are not used to develop the initial model).  As is the case with the districts, there is 

substantial variation by PDC:  the largest lots in the Northern Virginia District (5,144) and 

George Washington (1863) have three to ten more times as many spaces as the largest lots in 

Hampton Roads (504) and Richmond Regional (534), which in turn are roughly twice the size of 

the largest lots in New River Valley, Roanoke Valley-Alleghany, Northern Shenandoah, 

Rappahannock-Rapidan PDC, and Middle Peninsula PDC (200-300), which are larger than the 

capacities of lots in the remaining PDCs (less than 120).  However, even in the largest lots, the 

occupancy has high variance (e.g., 0 to 3,795 in Northern Virginia).   
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Table 5. Park and Ride Lots by Capacity and Occupancy in Virginia 

 

Grouping 

 

Name 

 

Lots 

Capacity Occupancy 

Max. Mean Med. Min. Max. Mean Med. Min. 

VDOT 

District 

 

Bristol 29 80 26 20 6 23 8 7 0 

Culpeper 29 211 38 23 7 120 16 6 0 

Fredericksburg 42 1848 275 43 13 1069 155 16 0 

Hampton Roads 30 504 96 63 10 181 41 22 0 

Lynchburg 8 70 22 20 6 8 3 2 0 

Northern Virginia  108 5144 519 234 12 3795 345 148 0 

Richmond 11 430 137 72 12 280 72 40 1 

Salem 15 270 44 23 12 84 20 12 0 

Staunton 25 258 58 31 5 131 26 11 0 

Metropolitan 

Planning  

Organization 

(MPO) or 

Transportation 

Planning 

Organization 

(TPO) 

 

 

Bristol MPOa 2 50 34 42 42 50 34 42 42 

Charlottesville-

Albemarle MPO 

8 104 11 32 23 56 0 11 5 

Fredericksburg Area 

MPO 

25 1863 0 439 107 1069 0 254 49 

Hampton Roads TPO 29 504 0 118 66 181 0 44 23 

Harrisonburg-

Rockingham MPOa 

1 50 50 50 50 50 50 50 50 

Kingsport TPOa 1 80 80 80 80 16 16 16 16 

Central Virginia 

MPOa 

1 78 78 78 78 4 4 4 4 

Northern Virginia 

District portion of the 

National Capital 

Region MPO 

109 5144 0 516 232 3795 0 322 143 

New River Valley 

MPOa 

2 267 23 145 145 84 17 51 51 

Richmond TPO 10 534 12 173 81 280 1 78 41 

Roanoke Valley TPO 4 239 20 80 30 72 12 32 22 

Staunton-Augusta-

Waynesboro MPOa 

2 120 35 78 78 55 24 40 40 

Planning 

District 

Commission 

(PDC) 

 

 

Lenowisco 9 80 8 31 20 18 1 8 6 

Cumberland Plateau 14 46 0 22 20 23 0 8 7 

Mount Rogers 7 50 6 30 28 20 2 10 9 

New River Valley 8 267 12 51 22 84 0 18 9 

Roanoke Valley-

Alleghany 

6 239 23 64 30 72 2 25 20 

Central Shenandoah 13 120 5 30 20 55 0 15 7 

Northern Shenandoah 12 257 10 97 66 131 3 39 20 

Northern Virginia 108 5144 12 519 234 3795 0 345 148 

Rappahannock-

Rapidan 

14 211 7 43 21 120 1 18 6 

Thomas Jefferson 20 104 6 30 23 56 0 12 4 

Central Virginiaa 2 78 20 49 49 78 20 49 49 

Southsidea 1 76 76 76 76 0 0 0 0 

Commonwealth 

Regional Councila 

1 50 50 50 50 11 11 11 11 

Richmond Regional 10 534 12 173 81 280 1 78 41 

George Washington 28 1863 0 396 73 1069 0 228 25 

Northern Necka 3 75 22 49 50 22 4 12 9 

Middle Peninsula 11 215 16 58 40 25 0 11 7 

Cratera 3 116 20 62 50 4 0 1 0 

Hampton Roads 27 504 0 115 66 181 0 46 23 

Max. = Maximum; Med. = Median; Min. = Minimum. 
a The small number of lots precludes developing a model exclusively for this group. 
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Figure 10. Park and Ride Lots by VDOT District 

 

Figure 11. Park and Ride Lots Within Metropolitan Planning Organizations (MPOs) and VDOT Districts 
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Figure 12. Park and Ride Lots Within Planning District Commissions (PDCs) and VDOT Districts 

 

Population Density Aggregation 

 

In the Fredericksburg and Hampton Roads districts, where initial model development 

seemed especially poor and where the districts appeared to have a substantial range of urban and 

rural areas, separate models for higher and lower density areas were developed where the 

population for each Census block group was divided by the geodesic area of the block group; the 

block groups are all in the coordinate system of Virginia State Plane South.  Then, for each 

district, the Jenks method was used to classify the densities into low and high categories, as 

shown in Table 6.  A similar approach was tried in the Richmond District; however, all lots were 

in the low density area.  Maps for these districts are provided in the Appendix. 

 
Table 6. Categorization of Park and Ride Lots Based on Block Group Density (People per Square Mile)  

 

District 

Low Density Rangea 

(No. of lots) 

High Density Rangea 

(No. of lots) 

Fredericksburg  0-2395 (30 lots)  2396-14669 (12 lots) 

Hampton Roads  0-5374 (25 lots)  5375-67230 (5 lots) 

Richmond  0-5883 (11 lots)  5884-28062 (0 lots) 

     a Ranges are rounded to the nearest integer. 
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The variables in Table 6 raise a potential question if a park and ride lot is located in an 

area that was formerly low density but is forecast to move to the high density category.  As 

discussed later, one would want generally to use the density classification that will be applicable 

at the time the forecast is generated.  To be clear, the regression models are based on correlation:  

one can never definitively prove that a given independent variable value leads to a given 

dependent variable value; one can only note that they are correlated.  

 

 

RESULTS 

 

 The cumulative results from the four methods are presented in two sections.  The first 

section gives the results of applying the existing diversion method directly to each VDOT 

district.  The second section shows the models tailored to Virginia for each VDOT district 

(recalibrated diversion models, generalized ADT models, and models based on regression). 

 

 

Application of the Existing Diversion Model 

 

Table 7 shows the results of applying the existing diversion model to each VDOT district 

where each column refers to an absolute value.  For example, in the Lynchburg District, when 

one computes the absolute value of the difference between the forecast occupancy and the mean 

occupancy for each of the eight lots, the mean difference is 423 spaces and the median difference 

is 385 spaces.  With a mean occupancy of 3 and a median occupancy of 2, the district’s mean 

absolute difference is about 141 times higher than the mean occupancy and its median absolute 

difference is about 192.5 times higher than the median occupancy.  The two left columns suggest 

that the existing diversion model yielded the lowest errors for the Bristol and Lynchburg districts 

when only the number of occupied spaces was considered.  However, when the fact that the 

average occupancy varies by district is considered, the next column suggests that the lowest 

errors are in the Fredericksburg and Northern Virginia districts.  Overall, Table 7 shows that 

generally the error is many times larger than the occupancy for all districts when the existing 

diversion model is used. 
 

Table 7. Error of Application of Existing Diversion Model in Virginia Districtsa 

 

District 

|Mean 

Difference| 

|Median 

Difference| 

|Mean Difference|  

Mean Occupancy 

|Median Difference| 

Median Occupancy 

Bristol 542 296 67.750 42.286 

Culpeper 1243 1133 77.688 188.833 

Fredericksburg 2193 1837 14.148 306.167 

Hampton Roads 2280 3801 55.610 172.773 

Lynchburg 423 385 141.000 192.500 

Northern Virginia 5266 4971 16.303 34.521 

Richmond 2837 2805 39.403 70.125 

Salem 1313 1203 65.650 100.250 

Staunton 897 932 34.500 84.727 
a All numbers presented are absolute values. 
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Development of Models for Each VDOT District 

 

Tables 8 through 13 and 15 through 17 show the results of the models by VDOT district.  

All variables shown are statistically significant (p = 0.05 or lower) except for the models that are 

based exclusively on the Vpeak and Vprime terms, such as Models 1 and 2 in Table 8.  Each table 

gives the full model, coefficient of determination (adjusted R2), mean occupancy, and the results 

of inspecting the plot of residuals, all of which are based on the full dataset.  The tables also 

indicate the mean testing error, where the model was recalibrated based on 70% of the 

observations and then applied to the remaining 30% of observations (which were not used to 

build the model). 

 

Each table also shows the recommended model for future application based on 

consideration of six criteria:  (1) better adjusted R2 than other models, (2) a standard error of less 

than one-half of the mean occupancy; (3) a mean testing error that is less than one-half of the 

mean occupancy; (4) residuals that are unbiased and homoscedastic; (5) less than one-half of the 

occupancy information contained in the intercept if the intercept is positive; and (6) variables 

with the proper sign and whose incorporation in a forecast will not cause VDOT to be 

inequitable when using occupancy forecasts to make investments in park and ride lots. 

 

Bristol District 
 

Table 8. Candidate Models for Park and Ride Lots in the Bristol District (29 Lots) 
 

No. 

Model (if not district-wide, number of sites 

and applicability)a 

Adj. 

R2a 

Std. 

Errora 

Mean 

|Error|b 

Mean 

Occ.a 

 

Residualsa 

1 0.002 * VpeakPHF + 0.000217 * VprimePHF 0.612a 6.564 4 8 Biased,  

Heteroscedastic 

2 0.02 * VpeakK + 0.002 * VprimeK 0.623a 6.467 4 8 Biased,  

Heteroscedastic 

3 5.823 + 0.001 * Closest ADT 0.207 5.709 4 8 Unbiased,  

Homoscedastic 

4 20.963 + 46.327 * V/C – 1.037 * 

RentOverAllIncome5 

0.385 5.029 2 8 Unbiased, 

Homoscedastic 

5c 1.359 + 0.082 * Rad2_JobsGT50Mi 

(Lenowisco PDC, 9 lots)  

0.839 2.613 5 8 Unbiased,  

Homoscedastic 

6c 2.099 + 0.018 * Closest ADT - 0.362 * VpeakK 

+ 0.004 * Rad5_JobsLT10Mi 

(Cumberland Plateau PDC, 14 lots)  

0.919 1.866 5 8 Unbiased,  

Homoscedastic 

7c -7.006 + 0.247 * TransitRiders2 + 0.004 * 

VprimeK 

(Mount Rogers PDC, 7 lots; includes 1 VDOT 

Salem lot)  

0.668 3.544 5 10 Unbiased,  

Homoscedastic 

Occ. = occupancy.  

a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of the 

data to the remaining 30% testing dataset. 
c Model is recommended for use. 
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Table 8 suggests that the best models for the 29 lots in the Bristol District are the three 

separate models for the PDCs that largely comprise the district.  All three models met at least 

four of the six criteria established for a good model:  higher adjusted R2 compared to the other 

models (in this case, 0.67 to 0.92); less than one-half of the occupancy information contained in 

the intercept (e.g., with a mean occupancy of 8 to 10, the intercepts are all less than 4 to 5); 

residuals that are unbiased and homoscedastic; and a standard error that is less than one-half the 

mean occupancy.  The Lenowisco PDC and Mount Rogers PDC models each met the fifth 

criterion:  signs of independent variables are logical and will not cause policy challenges for 

forecasters.  The Cumberland Plateau PDC model may only partially meet this criterion:  the 

closest ADT variable is positive as expected, but the negative sign associated with the peak hour 

volume for this same facility is initially counterintuitive.  Certainly there may be a good 

explanation for the sign as indicated:  for example, it may be the case that use occurs outside the 

peak hour.  None of the three chosen models met the sixth criterion of having a testing error less 

than one-half the mean occupancy.  In this particular case, however, the fairly low mean 

occupancy values may make failing to meet this last criterion acceptable. 

 

By comparison, each of the four models that were not selected had at least one substantial 

flaw.  The first two models had residuals that were biased and heteroscedastic, and the third 

model had a large intercept (5.8) that contained more than one-half of the explanatory power of 

the model, given the mean occupancy of 8.  The fourth model—which applies district-wide—

failed two criteria:  it had a lower percent of variance explained (about 39%) and a problematic 

independent variable in the form of a negative coefficient for rent divided by income.  The 

former criterion is not a fatal weakness:  despite the lower adjusted R2, the fourth model has the 

lowest mean error of all seven models—about one-fourth of the mean occupancy.  However, the 

latter criterion appears to present a potential equity challenge by VDOT:  if in a given location 

rents relative to income rise, the forecast is that the occupancy will drop such that 

implementation could yield a reduction in services (the provision of a lot).  Thus, the equity 

challenge with the fourth model appeared greater than the contradictory signs associated with the 

Cumberland Plateau PDC model. 

 

Culpeper District 

 

The four district-wide models in Table 9 for the 29 Culpeper District lots were all 

problematic:  all models exhibited bias, all showed a testing error larger than the mean 

occupancy, and one did not yield a positive adjusted R2.  Dividing the Culpeper District into 

subareas—the Rappahannock-Rapidan PDC and the Thomas Jefferson PDC—was helpful in this 

regard, with one of these PDCs—Thomas Jefferson—being split further into the urbanized 

portion (the Charlottesville-Albemarle MPO) and a rural portion (which excludes the MPO).  

This subdivision yielded three models, although as was the case with the Bristol District, none 

met all six criteria. 
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Table 9. Candidate Models for Park and Ride Lots in the Culpeper District (29 Lots) 
 

 

No. 

Model 

(Limitations if not applicable to the entire 

district) a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 -0.000266* VpeakPHF + 0.001 * VprimePHF 0.227 26.214 24 16 Biased,  

Homoscedastic 

2 -0.002 * VpeakK + 0.004 * VprimeK  0.200 26.664 24 16 Biased, 

Homoscedastic 

3 0.000411 * Max ADT 0.267 26.061 29 16 Biased,  

Homoscedastic 

4 12.744 + 0.001 * Average ADT -0.031 26.061 29 16 Biased,  

Homoscedastic 

5 0.004 * Average ADT  

(Thomas Jefferson PDC, 20 lots, includes 5 

VDOT Staunton lots)  

0.451 16.966 11 12 Biased,  

Homoscedastic 

6 0.000066 * VpeakPHF + 0.000293 * VprimePHF 

(Charlottesville-Albemarle MPO, 8 lots) 

0.149 19.447 6 11 Unbiased,  

Homoscedastic 

7 -0.0002 * VpeakK + 0.002 * VprimeK 

(Charlottesville-Albemarle MPO, 8 lots) 

0.110  19.884 6 11 Unbiased,  

Homoscedastic 

8c -4.107 + 27.798 * OvernightParkingAllowed + 

0.009 * TransitRiders2  

(Charlottesville-Albemarle MPO, 8 lots)  

0.583 12.307 4 11 Unbiased,  

Homoscedastic 

9c 2.725 + 0.042 * Rad2_JobsLT10Mi  

(non-MPO portion of Thomas Jefferson PDC, 12 

lots, includes 5 VDOT Lynchburg lots) 

0.324 13.496 14 12 Unbiased,  

Homoscedastic 

10c 6.141 – 0.065 * Carpoolers2 + 0.059 * 

TransitRiders2 + 0.005 * Rad5_Jobs10_to_24Mi 

+ 8.229 * Lighting (Rappahannock-Rapidan 

PDC, 14 lots) 

0.942 7.721 27 18 Unbiased,  

Homoscedastic 

Occ. = occupancy.  

a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 

b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use. 
  

1. Model 10 for the lots in the Rappahannock-Rapidan PDC met four criteria (percent of 

variance explained, a standard error that is less than one-half the mean occupancy, 

and unbiased/homoscedastic residuals).  Although the mean testing error of 27 was 

large, removal of two outliers in the testing dataset (whose errors are more than 3 

standardized residuals from the mean) would reduce the mean error from 27 to 3.  

Without these two sites the coefficient of the full model would be similar to those 

shown in Table 9, of 5.651 – 0.083 * Carpoolers2 + 0.081 * TransitRiders2 + 0.007 * 

Rad5_Jobs10_to_24Mi + 9.886 * Lighting. Note this changed model is similar to 

model 10 in Table 9: for example the coefficient of Carpoolers 2 is -0.083 versus -

0.065. The coefficients for the independent variables were plausible; although the 

negative sign associated with the number of carpoolers within 2.5 miles of the lot was 

counterintuitive in isolation, it is possible this was offset by the role of transit riders; 

both variables indicate areas within 2.5 miles of the lot.  That said, the number of 

carpoolers was always higher than the number of transit riders within 2.5 miles of the 

lot in this region.    
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2. Model 8 for the Charlottesville-Albemarle MPO (which has eight lots) met five 

criteria.  Notably, the lots in this area are sensitive to transit demand, which can be 

expected given that they are in the urbanized area of Charlottesville plus Albemarle 

County.  The one weakness of Model 8 was the relatively large standard error 

compared to the mean occupancy, although the testing error was considerably better.  

The model’s indication of overnight parking allowance increasing lot occupancy by 

28 might not necessarily reflect a causal relationship; it is possible at this location that 

overnight parking restrictions indeed represented some other factor not available to 

the research team.  
 

3. Model 9, which separates the 12 rural lots in the Thomas Jefferson PDC area from the 

8 urban lots in the Charlottesville-Albemarle MPO, showed a testing error (14) larger 

than the mean occupancy (12), but it appeared better than alternative Model 5 in 

terms of the residual plots with a comparable mean testing error.  

 

Fredericksburg District 

 

There simply are no strong models for the 42 Fredericksburg District lots.  Model 1 is an 

option, and certainly the poor coefficient of determination could be explained by the fact that 

other variables may influence this diverse set of lots—but the bias exhibited by the residuals 

makes such a model problematic.  Splitting the 42 lots into high population density areas (12 

lots) and low population density areas (30 lots) helped modestly but still yielded models with 

errors larger than the mean occupancy.  A contributing factor for the high density portion may 

have been that most of the lots (10 out of 12) are VRE lots. 

 

In high density areas, Models 2 and 3 showed higher standard errors and higher testing 

errors than the mean occupancy.  Although it shows a low testing error, Model 4’s negative 

coefficient for the number of transit riders within 2.5 miles of the lot appeared hard to explain in 

isolation.  Because the model was already restricted to block groups of high population density, 

the fact that the transit ridership reduced forecast occupancy suggested that this mode choice 

might be a surrogate for some other unobserved variable.  For example, because these high 

density areas include transit service, it may be the case that an increase in transit ridership 

signifies the substitution of transit trips for carpooling trips such that occupancy drops.  

However, the positive coefficient of population within 5 miles of the lot makes sense.  Except for 

the fact that the testing error for Model 5 was higher than for Model 4, mathematically, Model 5 

might be the best of the models in that part of the district.  However, the negative coefficient 

associated with the population classified being in poverty within 2.5 miles of the lot could 

present an equity issue.  Of these four models, Models 4 and 5 are the “least bad” options for the 

dozen lots in high density areas of the Fredericksburg District, and because of the equity 

concerns, Model 4 is recommended. 
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Table 10. Candidate Models for Park and Ride Lots in the Fredericksburg District (42 Lots) 
 

 

No. 

Model 

(Limitations if not applicable 

to the entire district)a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 27.467 + 0.002 * Max ADT 0.132 244.598 125 155 Biased, 

Heteroscedastic 

2 0.123 * VpeakPHF– 0.002 * VprimePHF  

(high population density, 12 lots) 

0.618 a 211.661 248 180 Unbiased, 

Homoscedastic 

3 1.077 * VpeakK – 0.013 * VprimeK  

(high population density, 12 lots) 

0.638 a 205.985 232 180 Unbiased, 

Homoscedastic 

4 c  1931.706 - 1.949 * TransitRiders2 + 

0.000256 * POP5 (high population density, 

12 lots)  

0.979 68.041 35 180 Unbiased, 

Homoscedastic 

5 -175.485 - 0.021 * PovertyPOP2 + 0.048 * 

LEPPop5 (high population density, 12 lots)  

0.945 71.283 135 180 Unbiased, 

Homoscedastic 

6 0.003 * VpeakPHF + 0.002 * VprimePHF  

(low population density, 30 lots) 

0.618 a 247.256 106 145 Biased, 

Heteroscedastic 

7 0.013 * VpeakK – 0.022 * VprimeK 

(low population density, 30 lots) 

0.294 a 248.815 109 145 Biased, 

Heteroscedastic 

8 37.489 + 0.002 * Max ADT  

(low population density, 30 lots) 

0.132 244.598 125 145 Biased, 

Heteroscedastic 

9 c -217.053 + 241.839 * Lighting + 329.448 * 

NuofTranServicePP +0.018 * POPDEN + 

67.016 * PHEF (low population density, 30 

lots)  

0.790 120.285 36 145 Biased, 

Heteroscedastic 

10 0.006 * VpeakPHF + 0.002 * VprimePHF  

(FAMPO, 25 lots) 

0.325 329.988 285 254 Unbiased, 

Homoscedastic 

11 0.048 * VpeakK + 0.020 * VprimeK 

(FAMPO, 25 lots) 

0.327 329.584 300 254 Unbiased, 

Homoscedastic 

12 296.462 + 6.159 * NuofAdjLot + 375.304 * 

Lighting – 0.047 * Rad2_JobsLT10Mi 

(FAMPO, 25 lots) 

0.600 200.791 203 254 Unbiased, 

Homoscedastic 

13 -102.649 – 0.001 * EMP2.5 + 0.038 * 

Rad10_Jobs10_to_24Mi  

(George Washington PDC, 28 lots) 

0.575 173.987 170 228 Unbiased, 

Heteroscedastic 

14 c 1.872 * RentOverAllIncome2 – 0.999 * 

AvgPctOfRentIncomeOnRent5  

(Middle Peninsula PDC, 11 lots)  

0.667 7.468 11 11 Unbiased, 

Homoscedastic 

Occ. = occupancy.  

a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use. 

 

 For the low density area of the Fredericksburg District, all models were biased and 

heteroscedastic.  However, Model 9 may be tolerable for forecasting purposes.  This model, 

which applies to most sites (30 of 42) in the Fredericksburg District, met the four remaining  

criteria:  coefficients that appear logical (e.g., transit service, lighting, and congestion increase 

occupancy), testing error below one-half the mean occupancy, a higher coefficient of 

determination than other models, and less than one-half of the occupancy information held in the 

intercept.  Although the standard error for Model 9 is about four-fifths of the mean occupancy, it 

is nonetheless lower than for alternative models. 
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Model 14 is an option for the Middle Peninsula PDC portion of the district:  the model 

has a relatively high mean error compared to the occupancy, but the low value overall may make 

it worth considering.  That is, if one applies Model 9 (the recommended low density model) to 

the Middle Peninsula PDC sites (all of which are located in low density areas), the testing error 

exceeds 30.  However, the last term is an equity concern:  Model 14 suggests that fewer park and 

ride lots are needed in locations where the percent of income spent on rent rises (for locations 

within 5 miles of the park and ride lot).  If Model 14 is not used, then Model 9 would be used for 

those Middle Peninsula PDC sites.  For that reason, both Model 9 and Model 14 are listed as 

options for the Middle Peninsula PDC portion of the Fredericksburg District. 

 

Hampton Roads District 

 
Table 11. Candidate Models for Park and Ride Lots in the Hampton Roads District (30 Lots) 

 

 

No. 

Model 

(Limitations if not applicable to the 

entire district) a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 1.576 + 0.000390 * Max ADT 0.226 42.239 14 41 Unbiased/ 

Homoscedastic 

2 -0.000037 * VpeakPHF + 0.001 * 

VprimePHF  

(high population density, 5 lots) 

0.678 58.684 78 84 Could not 

determine 

3 -0.001 * VpeakK – 0.008 * VprimeK 

(high population density, 5 lots) 

0.689 57.667 68 84 Could not 

determine 

4c -541.193 + 0.052 * Carpoolers2 + 0.252 * 

Rad2_Jobs25_to_50Mi (high population 

density, 5 lots)  

0.986 7.929 3 84 Unbiased/ 

Homoscedastic 

5 -0.001 * VpeakPHF + 0.000419 * 

VprimePHF  

(low population density, 25 lots) 

0.538 34.431 43 33 Unbiased/ 

Heteroscedastic 

6 -0.014 * VpeakK – 0.004 * VprimeK 

(low population density, 25 lots) 

0.540 34.360 21 33 Unbiased/ 

Heteroscedastic 

7 7.734 + 0.000142 * EligDisadvPop5 - 

0.005 * Rad5_JobsLT10Mi + 0.016 * 

Rad5_JobsGT50Mi 

(low population density, 25 lots) 

0.580 25.629 16 33 Unbiased/ 

Heteroscedastic 

8c 8.341 + 0.000262 * Max ADT  

(low population density, 25 lots)   

0.170 35.310  14 33 Unbiased/ 

Homoscedastic 

9 23.183 + 0.001 * LEPPop5 + 103.384 * 

BikeParkingisCovered (HRTPO, 28 lots) 

0.407 37.218 46 44 Biased/ 

Homoscedastic 

10 0.000352 * VpeakPHF + 0.000384 * 

VprimePHF  

(HRTPO, 28 lots) 

0.554 43.292 44 44 Unbiased/ 

Homoscedastic 

11 0.003 * VpeakK+ 0.004 * VprimeK  

(HRTPO, 28 lots) 

0.557 43.146 43 44 Unbiased/ 

Homoscedastic 

12 25.671 + 100.831 * BikeParkingisCovered 

+ 0.000113 * POP5 – 0.002 * 

Rad5_JobsLT10Mi  

(Hampton Roads PDC, 27 lots) 

0.499 34.465 29 46 Unbiased/ 

Homoscedastic 

Occ. = occupancy.  
a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use. 
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 As was the case with the Fredericksburg District, segmentation into high and low 

population density areas helped modestly.  Most lots in Hampton Roads (25 of 30) are in low 

density locations, meaning that a generalized ADT model for the entire district (Model 1) and the 

generalized ADT model for the low density locations (Model 8) are similar in terms of model 

coefficients, standard error, testing error, and adjusted R2.  Only two models are recommended 

for future use: 

 

1. For the 5 lots that are high density, Model 4 is recommended.  However, the small 

sample size (4 lots for training and 1 lot for testing) means that factors other than the 

usual criteria of low testing error, higher coefficient of determination, and lack of bias 

shown by the residuals should be considered.  In this particular case, the fact that the 

number of carpoolers increases the occupancy is logical. 

 

2. For the 25 lots that are low density, Model 8 is recommended, primarily because of 

one criterion:  the model is unbiased and homoscedastic.  Although that model 

explains only 17% of the variation in occupancy (compared to 58% for Model 7), it is 

telling that both models performed similarly with the testing dataset.  That said, the 

standard error is larger than the mean occupancy. 

 

The existence of Models 9 and 12 comprises a cautionary tale regarding inferences that 

can be drawn from models and a recognition that there is not always a clearly best model.  The 

30 lots in the Hampton Roads District are largely similar to the 27 lots in the Hampton Roads 

PDC or the (25, 28, or 29) lots in the Hampton Roads Transportation Planning Organization 

(TPO).  Although it is comforting that the same variable (covered bicycle parking) is present in 

both models with a similar coefficient in each, it is interesting that an additional variable in each 

model (LEP population in Model 9 and total population in Model 12, each within 5 miles of the 

lot) is included.  It may be the case that segmentation by population density (Models 4 and 8) 

thus allows for different characteristics to be included in explaining occupancy in these two 

different areas (e.g., the number of carpoolers within 2.5 miles of the lot in high density areas as 

per Model 4, and ADT in low density areas as per Model 8).  

 

That said, one could also argue that the small number of lots (5) in the high density 

locations renders segmentation by population less useful such that an alternative approach could 

be simply to adopt Model 12 (based on the PDC boundaries) and then not have an approach for 

estimating demand for the 3 remaining lots. 

 

Lynchburg District 

 

All four models in the Lynchburg District were similar with regard to four of the six 

criteria.  They all met three criteria:  (1) most of the information in the model is in the variables 

rather than the intercept; (2) all independent variables are logical (e.g., occupancy rises as a 

function of ADT); and (3) residuals suggest an unbiased model with constant variance.  The 

models all failed one criterion:  the mean testing error was larger than one-half the occupancy; it 

was either equal to or exceeded the occupancy.   
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Table 12. Candidate Models for Park and Ride Lots in the Lynchburg District (8 Lots) 
 

 

No. 

Model 

(Limitations if not applicable to the entire 

district)a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 0.001 * VpeakPHF + 0.000274 * VprimePHF 0.848 1.426 4 3 Unbiased/ 

Homoscedastic 

2 0.006 * VpeakK + 0.002 * VprimeK 0.862 1.358 4 3 Unbiased/ 

Homoscedastic 

3 0.879 + 0.0003 * Closest ADT 0.469 1.983 3 3 Unbiased/ 

Homoscedastic 

4c -1.472 + 0.475 * PHEF + 0.002 * Average ADT + 

0.000049 * POP5 

0.949 0.614 9 3 Unbiased/ 

Homoscedastic 

Occ. = occupancy,  
a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use.  An option for 5 of these lots, however, is to use the rural portion of the Thomas 

Jefferson PDC model associated with the Culpeper District. 

 

There were differences in two criteria:  (1) the percent of variation in occupancy 

explained (a bit less than 50% for Model 3 compared to almost 95% for Model 4), and (2) size of 

the standard error (about 66% of the mean occupancy for Model 3 compared to 20% of the mean 

occupancy for Model 4).   

 

For a district-wide approach, Model 4 is recommended as the better model based on the 

fact that it did well with regard to five of the six criteria and the fact that although its mean 

testing error was 3 times the occupancy, the error was nonetheless relatively small in absolute 

terms.  A salient reason for preferring Model 4 to Model 3 is the reduced standard error of Model 

4.  However, the Lynchburg District includes 5 lots that are in the Thomas Jefferson PDC, and 

thus for those 5 lots, the rural portion of the Thomas Jefferson PDC model is also applicable. 

 

As discussed previously, the testing error is developed based on a 70% model that is 

applied to the remaining 30% dataset.  For example, after the form of Model 3 was determined 

from 100% of the data, a recalibration based on just 70% of the data gave -0.485 + 0.000419 * 

Closest ADT.  That recalibrated model gave a forecast of 0 for one of two testing sites 

(compared to an observed value of 3) and a forecast of 1 at the other testing site (compared to an 

observed value of 4), and hence a mean testing error of 3 is shown for Model 3.  This value of 3 

is much lower than the mean testing error of Model 4, which was 9 based on the same two 

testing sites.  However, in the full model shown in Table 12, the average difference between 

forecast and observed values based on all eight sites gave much lower values of 1.5 (Model 3) 

and 0.375 (Model 4).  This result was consistent with the fact that Model 3 had about 3 times the 

standard error of Model 4.  That said, one could also defend Model 3 if data requirements 

necessitated its use. 
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Northern Virginia District 

 
    Table 13. Candidate Models for Park and Ride Lots in the Northern Virginia District (108 Lots) 

 

 

No. 

Model 

(Limitations if not applicable to the 

entire district)a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residuala 

1 0.002 * VpeakPHF + 0.002 * 

VprimePHF 

0.239a 618.105 380 345 Unbiased/ 

Heteroscedastic 

2 0.001 * VpeakK + 0.000320 * 

VprimeK 

0.246 615.266 316 345 Unbiased/ 

Heteroscedastic 

3 122.474 + 0.000049 * Sum ADT 0.039 609.839 396 345 Unbiased/ 

Heteroscedastic 

4  104.685 + 928.503 * Cost to Park + 

46.499 * NuofTranServicePP – 

17.549 * ProxToIAP  

0.572 406.927 318 345 Unbiased/ 

Heteroscedastic 

5 29.919 + 0.19 * Average ADT + 

48.053 * DTNearestP 

(remove 11 lots based on residuals)  

0.065 225.980 168 191 Unbiased/ 

Homoscedastic 

6 (4.503 + 9.349 * Bike Parking is 

Covered + 1.132 * 

NuofTranservicePP – 0.514 * 

ProximityToIAP+ 0.164 * 

RentOverAllIncome2)2 

0.513 (8.65065) 292 345 Unbiased/ 

Homoscedastic 

7 (0.786 + 4.902 * 

BikeParkingIsCovered + 0.587 * 

NuofTranServicePP + 6.249 * 

TransitServiceAvailable)2  

(remove 21 lots based on residuals 

and VRE = 87 lots) 

0.427 (5.56) 164 147 Unbiased/ 

Homoscedastic 

8 -508.705 + 241.725 * 

BikeParkingIsCovered + 13.672 * 

NuofTranServicePP + 20.678 * 

AvgPctOfRentIncomeOnRent2  

(remove 21 lots based on residuals 

and VRE = 87 lots) 

0.447 140.933 166 147 Unbiased/ 

Heteroscedastic 

9 (-7.614 + 0.330 * Bicycle Spaces + 

0.616 * NuofTranServicePP + 0.586 

* RentOverAllIncome2)2 

(remove 21 lots based on residuals 

and VRE = 87 lots) 

0.515 5.11787 85 147 Unbiased/ 

Homoscedastic 

10c 

 

 (2.488 + 0.298 * Bicycle Spaces + 

0.396 * NuofTranServicePP + 0.001 

* Average ADT)2 

(78 of the 87 lots with transit service) 

0.483 5.18047 139 163 Unbiased/ 

Homoscedastic 

11c 

 

(2.844 - 0.000071 * Dist_M2 + 1.128 

* DTNearestP)2 

(9 of the 87 lots without transit 

service) 

0.657 0.733375 4 4 Unbiased/ 

Homoscedastic 

Occ. = occupancy. 
a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use. 
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 The method of developing models for the Northern Virginia District proceeded 

differently from that for the other districts because of the large number of lots, the widely 

varying characteristics of those lots, the urban nature of that district, and some initial challenges 

when district-wide models were developed.  Thus, for this district only, five additional steps 

were followed in model development: 

 

1. Identify lots with homogenous responses. 

2. Develop a nonlinear model.  

3. Apply a nonlinear model to lots with homogenous characteristics. 

4. Segment the nonlinear model for lots with homogenous characteristics. 

5. Consider a model for the excluded lots. 

 

Identify Lots With Homogenous Responses 

 

The first four models in Table 13 have large standard errors (relative to the mean 

occupancy), large testing errors, and heteroscedastic plots of residuals.  Unlike with the other 

districts, challenges were not attributable to a small number of samples:  the Northern Virginia 

District has 108 park and ride lots.  Thus, clearly the first four linear models suffered from at 

least one of three possible drawbacks:  missing an explanatory variable, incorrectly assuming 

only a linear relationship between occupancy and independent variables, or a dataset that 

requires segmentation in order to reduce scatter. 

 

In Model 5, the research team considered this last possibility that some lots in the 

Northern Virginia District are fundamentally different from others—as mentioned previously, 

this district has a wide variance in annual estimates of occupancy from a value of 0 at the 

Leesburg II lot at the intersection of Crosstail Blvd. & Claudia Drive to a value of 3795 at the 

Vienna-Fairfax-GMU Station Metro lot (which was more than 80% of the lot’s capacity of 

4,467).  To detect lots that may have fundamental differences from other lots, the standardized 

residuals from the regression equation in Model 4 (on the vertical axis) were plotted against the 

standardized predicted values (on the horizontal axis), as shown in Figure 13.  Although most 

(97) lots are clustered to the left of Figure 13 around a standardized predicted value of 0, there 

are a few (10) lots that are clustered to the right of Figure 13 and one lot that is at 5 standardized 

residuals; these 11 lots are numbered in the figure.   

 

These 11 lots were removed from the analysis (9 were Metro lots, 1 was the Ballston 

Parking Garage, and 1 was the Horner Road Commuter lot).  A new model—Model 5—was built 

using just the remaining 7 lots.  This removal of the 11 lots was successful in two ways:  

rendering constant variance (as exhibited by the change in the plot of the residuals), and lowering 

the mean testing error by almost one-half.  However, the model was problematic in that an 

adjusted R2 of just about zero means that for forecasting purposes, a better answer would be 

simply to take the mean occupancy of the dataset and use that as a forecast of occupancy. 
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Figure 13. Eleven Lots That Appear to Be Outliers in the Northern Virginia District 

 

Develop a Nonlinear Model  

  

Accordingly, returning to the hypothesis that a nonlinear relationship might be present, 

Model 6 uses a second order transformation for all 108 park and ride lots such that the dependent 

variable was altered from occupancy to the square root of occupancy.  Generally, this approach 

was successful in the sense that Model 6 had constant variance and the testing error, although 

large, was still less than the mean occupancy.  The increase in the adjusted R2 (0.45) showed that 

the model offered some explanatory power.  The standard error is in the units of the dependent 

variable, so the smaller standard error associated with Model 6 compared to Model 5 reflects the 

fact that Model 6 gives error in terms of the square root of occupancy whereas Model 5 gives 

error in terms of occupancy.  For instance, a Model 6 error of 8 might correspond to a Model 5 

error of 64.   

 

Apply a Nonlinear Model to Lots with Homogenous Characteristics 

 

 The research team then looked closely at the 11 lots that had been removed from the 

dataset in Model 5 and sought to identify manually any VRE lots, any Metro lots, and any lots 

with a capacity of more than 2,000 spaces, resulting in an additional 10 lots being removed, all of 

which were VRE lots, as shown in the latter portion (Last 10 lots) of Table 14.  It is not 

surprising that models for the 87 lots in the Northern Virginia District might not adequately 

model demand at the Metro and VRE lots:  others (e.g., Shirgoakar and Deakin, 2005) found that 

characteristics of users differ between general park and ride lots and those that exclusively serve 

rail facilities.   
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Table 14. Park and Ride Lots Considered for Removal in the Northern Virginia District 
Basis for Removal Park and Ride Lot Capacity Occupancy 

Removed from Model 5 based on 

observations of residuals for Model 4 

Ballston Public Parking Garage 2800 1914 

Dunn Loring-Merrifield Station Metro 2083 1076 

East Falls Church Metro 439 404 

Eisenhower Avenue Metro 625 196 

Franconia/Springfield WMATA/VRE 5144 2979 

Horner Road Commuter Lot 2293 2249 

Huntington Avenue Metro 3616 2315 

Van Dorn Street Metro 383 318 

Vienna-Fairfax-GMU Station Metro 4667 3795 

West Falls Church Metro 2058 1178 

Wiehle-Reston East Metro Station Garage 2300 2,295 

Removed from Model 5 based on 

observations of residuals for Model 4 and 

also removed from Models 7 and 8 

because of the presence of Virginia 

Railway Express (VRE) 

Backlick Road VRE 220 215 

Broad Run/Airport VRE 1065 947 

Burke Center VRE 1516 929 

City of Manassas Park VRE 600 578 

City of Manassas VRE, 4 Lots 878 673 

Lorton Commuter Rail (VRE) 683 643 

Quantico VRE 195 244 

Rippon VRE 676 497 

Rolling Road VRE 368 401 

Woodbridge VRE 738 570 

 

Then, a nonlinear model for the remaining 87 lots was developed, shown as Model 7.  

The net impact of both eliminating the 21 lots and using the nonlinear model is certainly 

preferable to doing neither:  when Models 4 and 7 are compared, although the percent of 

variance explained is similar, the Model 7 shows a better fit in terms of the variance of the 

residuals being constant.  The necessity of the nonlinear model is also confirmed by comparing 

Model 7 to Model 8, which similarly removes the 21 lots but uses a linear model:  again, non-

constant variance is observed in Model 8. 

 

 None of the six criteria, however, can justify choosing Model 7 over Model 6.  Both 

nonlinear models have a similar coefficient of determination (around 51% or 43%), good 

residual plots, some independent variables that are reasonable (e.g., transit service and closeness 

to an interstate access point all increase occupancy), and relatively small intercepts (most of the 

occupancy comes from the variables rather than the intercept).  Although the standard error and 

mean testing error associated with Model 7 were smaller than with Model 6, the mean lot 

occupancy was also smaller for Model 7.  Thus, the best reason for continuing with Model 7 is 

that it excludes lots with fundamentally different service characteristics—mostly serving Metro 

and VRE. 

 

Segment the Nonlinear Model for Lots With Homogenous Characteristics 

 

The review of Model 7 also raised three concerns of practicality.  The first was the 

provision of covered bicycle parking—the large coefficient caused the TRP to wonder if this 

might be a surrogate for some other phenomenon.  The second was the use of two transit-related 

variables.  To address the first concern, the binary variable BikeParkingIsCovered was replaced 

with the number of bicycle spaces (thereby making it a continuous variable).  The second 
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concern was the use of two transit-related variables.  To address this concern, the variable 

TransitServiceAvailable was removed such that the only transit variable that remained was the 

number of transit providers. The third was the high occupancy rates relative to capacity; for some 

lots, for example, the Dumfries Road Commuter Lot at U.S. 1 and Route 234, occupancy (917) 

was almost equal to capacity (921), which suggests there may be latent demand such that 

occupancy would be higher.  Although it is not possible to know this latent demand exactly, a 

presence of latent demand variable was added where the variable had a value of 1 if demand was 

95% of capacity or higher; 11 of the 87 lots met this criterion.  The result was Model 9, 

applicable to 87 lots.  Both the number of bicycle spaces and the number of transit service 

providers were significant, although the presence of latent demand was not significant and thus 

was not included in the model.  The mean testing error was reduced by about one-half (relative to 

Model 7), and the standard error also decreased. 

 

Model 9 was then segmented into two separate submodels—one for the 78 lots with 

transit service (Model 10), and one for the 9 lots without transit service (Model 11).  Although 

the mean testing error was larger for Model 10, this segmentation appeared appropriate given the 

very different occupancies for the lots in the two groups.  When transit service is available 

(Model 10), key variables include number of bicycle spaces, number of transit service providers, 

and ADT.  When transit service is not available (Model 11), none of these variables affected 

demand—rather, the explanatory variables were purely geographic (distance to the second 

largest employment center and distance to the nearest lot). 

 

Consider a Model for the Excluded Lots 

 

Additional experiments with developing a model for just the 21 excluded lots, however, 

were unsuccessful.  No model for the 21 lots (Table 14, mostly VRE and Metro) could be 

developed that was statistically significant—that is, no independent variables remained in the 

model even if the intercept was removed and the model was forced through the origin.  

Accordingly, it appears that any preference for Model 6 over Models 10 and 11 does not reflect 

an improved ability to forecast demand for the 21 excluded lots.  Thus, Models 10 and 11 are 

recommended for the 87 remaining lots in the Northern Virginia District, with an 

acknowledgment that at this point in time no good model exists for the 21 lots shown in Table 

14.  A map of these lots is provided in Figure A5 in the Appendix.  

 
Richmond District 

 

For the Richmond District, Model 4 is the best model, meeting five of the six criteria:  

less than one-half (actually about 10%) of the information contained in the intercept; 

independent variables that are logical (e.g., an increase in volume or congestion is associated 

with an increase in occupancy); a relatively high percent of variation explained (86.7%); a 

standard error that is less than one-half the mean occupancy; and a model that is unbiased and 

homoscedastic.  In this district, however, the mean occupancy is much higher than the median 

occupancy of 40:  neither this model nor many of the other models except Model 7 have a 

standard error that is less than one-half the median occupancy.  The mean testing error of Model 

4, however, is almost two-thirds the mean occupancy, meaning it does not meet the last criterion. 

As a practical matter, Model 4 simplifies implementation as it is applicable to the entire district.  

However, the last row of Table 15 shows the limits of a small dataset.   
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Table 15. Candidate Models for Park and Ride Lots in the Richmond District (11 Lots) 

 

 

No. 

Model 

(Limitations if not applicable  

to the entire district)a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 -0.005 * VpeakPHF + 0.001 * 

VprimePHF 

0.549 73.411 77 72 Unbiased/ 

Heteroscedastic 

2 -0.039 * VpeakK + 0.011 * VprimeK 0.527 75.150 80 72 Unbiased/ 

Heteroscedastic 

3 -5.997 + 0.008 * Average ADT 0.637 51.881 45 72 Unbiased/ 

Homoscedastic 

4 c 4.083 + 0.006 * Average ADT + 

151.906 * PHEF 

0.867 31.467 45 72 Unbiased/ 

Homoscedastic 

5 -0.005 * VpeakPHF + 0.001 * 

VprimePHF  

(Richmond Regional PDC or TPO, 

10 lots) 

0.538  77.861 47 78 Unbiased/ 

Homoscedastic 

6 -0.039 * VpeakK + 0.011 * VprimeK  

(Richmond Regional PDC or TPO, 

10 lots) 

0.516  79.698 55 78 Unbiased/ 

Homoscedastic 

7 6.361 + 0.006 * Average ADT + 

152.161 * PHEF  

(Richmond Regional PDC or TPO, 

10 lots) 

0.857 33.324 38 or 113 78 Biased/ 

Heteroscedastic 

Occ. = occupancy. 
a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use. 

 

Models 4 and 7 are similar in terms of coefficients, independent variables, adjusted R2, 

and standard error.  The existence of Model 7 shows the limitations of assessing model 

performance with a small dataset.  The area represented by the Richmond TPO and the area 

represented by the Richmond PDC each encompasses 10 of the 11 Richmond District lots; they 

exclude the Appomattox River lot.  The research team tested the mean error for Model 7 twice:  

after determining the model shown in Table 8, 3 lots were removed randomly; a new model was 

recalibrated based on the remaining 7 lots; and then the mean error of that model, as applied to 

the 3 lots not used in model development, was determined.  The first time, the mean error was 

38; the second time, it was 113.  To be clear, this difference resulted simply from the random 

selection process.  The small number of samples can thus cause this variation, as well as inhibit a 

determination of the residual plot. 

 

Salem District   

 

Table 16 shows that Model 4 is potentially useful if one considers only statistical 

indicators:  high adjusted R2; standard error and mean testing error that are one-fifth and one-

fourth of mean occupancy, respectively; and a good plot of residuals.   
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Table 16. Candidate Models for Park and Ride Lots in the Salem District (15 Lots) 

 

 

No. 

Model 

(Limitations if not applicable to the entire 

district)a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 0.003 * VpeakPHF + 0.000434 * VprimePHF 0.598 a 19.827 9 20 Unbiased/ 

Heteroscedastic 

2 0.03 * VpeakK + 0.004 * VprimeK 0.583 20.205 10 20 Unbiased/ 

Heteroscedastic 

3 -9.339 + 0.007 * Average ADT 0.450 18.367 8 20 Unbiased/ 

Heteroscedastic 

4  -221.679 + 59.902 * TransitServiceAvailable 

– 0.014 * TransitRiders5 + 260.055 * PHF  

0.960 4.924 4 20 Unbiased/ 

Homoscedastic 

5 -0.018 * VpeakPHF + 0.001 * VprimePHF 

 (Roanoke Valley TPO, 4 lots) 

0.713 21.233 4 32 Biased/ 

Homoscedastic 

6 -0.150 * VpeakK + 0.009 * VprimeK  

(Roanoke Valley TPO, 4 lots) 

0.778 18.705 4 32 Biased/ 

Homoscedastic 

7 -2214.482 + 90.034 * 

AvgPctOFRentIncomeOnRent5 (Roanoke 

Valley TPO, 4 lots) 

0.994 2.081 1 32 Unbiased/ 

Homoscedastic 

8c 2.340 + 67.177 * TransitServiceAvailable + 

0.000161 * POP5  (New River Valley PDC, 

8 lots) 

0.981 3.809 3 18 Unbiased/ 

Homoscedastic 

9c 5.849 + 0.015 * Rad2_Jobs25_to_50Mi + 

48.731 * TransitServiceAvailable (Roanoke 

Valley Alleghany Regional Commission, 6 

lots) 

0.881 8.4 14 25 Unbiased/ 

Homoscedastic 

Occ. = occupancy. 
a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use.  The Salem District lot that is not covered by these models is reflected in the 

Mount Rogers PDC model associated with the Bristol District. 

 

However, the contradictory impacts of transit in the coefficients (a higher occupancy for 

transit service being available yet a lower occupancy for the number of riders) is disconcerting.  

Further, given that the PHF tends to be within a tight range of 0.88 to 1.0 with a common value 

of 0.95, there exists the possibility that the intercept (-221.679) plus the term 260.055*PHF is 

itself responsible for most of the mean occupancy.  Although these concerns are not fatal flaws, 

they suggest that either more explanation is needed or a different model, if available, is 

preferable. 

 

 Two PDCs (New River Valley with 8 lots and Roanoke Valley-Alleghany Regional 

Commission with 6 lots) account for 14 of the 15 Roanoke District lots (the 15th is in the Mount 

Rogers PDC).  Models for the former two PDCs are shown in the last two rows of Table 16.  

Both models met five of the six criteria:  relatively good adjusted R2 (88% or higher); standard 

error below one-half the mean occupancy; good residual plots; low intercepts; and independent 

variables that are reasonable (e.g., transit service, population within 5 miles of the lot, and 

persons living nearby who have jobs that are 25 to 50 miles away are all associated with an 

increase in occupancy).  Model 8 met a sixth criterion (mean testing error is low), and the testing 

error for Model 9 was slightly larger than one-half the mean occupancy.  Accordingly, Models 8 
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and 9 are recommended in lieu of Model 4; the 1 lot not included therein is covered by the 

Mount Rogers PDC model, which also was recommended as part of the Bristol District lots. 

The small number of lots in Models 7, 8, and 9 requires some judgment about the evaluation of 

performance.  Regarding Model 9, a case can be made that there are some residuals—that is, 

difference between forecast and predicted values for the testing dataset—that are not within 3 

standard residuals, meaning they are outliers and are contributing to the larger testing error.  

However, the small sample size of four lots for training and two lots for testing indicates that as a 

practical matter, any further reduction in the dataset means that one is simply developing a site-

specific model.  Although Model 7 may also be considered, the fact that it is applicable for just 

four lots means that it is functioning also as almost a site-specific model where the sole 

determinant of occupancy is the percent of income spent on rent. 

 

Staunton District 

Models 4, 5, and 6 in Table 17 are all potential candidates for forecasting demand.  All 

three models met three criteria:  the models explain a large amount of scatter in the dataset 

(adjusted R2 is above 80%), the plots of the residuals are unbiased and homoscedastic, and the 

mean testing error is less than one-half the mean occupancy.  In terms of the fourth criterion, 

Models 5 and 6 have lower standard errors than Model 4, and this difference is more pronounced 

considering that the mean occupancy for the lots that are the subject of Model 6 is 50% higher 

than for the lots that are the subject of Model 4.  The intercept is smaller for Model 5 (a desired 

trait) than for Models 4 and 6 (a larger negative value), but nonetheless more information is 

contained in the variables than in the intercept in terms of forecasting occupancy. 

 

Table 17. Candidate Models for Park and Ride Lots in the Staunton District (25 Lots) 

 

 

No. 

Model 

(Limitations if not applicable to the entire 

district) a 

 

Adj. 

R2a 

 

Std. 

Errora 

 

Mean 

|Error|b 

 

Mean 

Occ.a 

 

 

Residualsa 

1 0.003 * VpeakPHF + 0.364 * VprimePHF 0.454 31.510 41 26 Unbiased/ 

Heteroscedastic 

2 0.035 * VpeakK + 0.006 * VprimeK 0.425 32.336 41 26 Unbiased/ 

Heteroscedastic 

3 -6.841 + 0.009 * Average ADT 0.485 23.727 21 26 Unbiased/ 

Heteroscedastic 

4  -68.401 + 56.617 * TransitServiceAvailable 

+ 2.215 * CommuteTime2 + 0.011 * EMP 

2.5 

0.807 15.020 9 26 Unbiased/ 

Homoscedastic 

5c 0.516 + 0.027 * Rad2_JobsGT50Mi + 0.004 

* Carpoolers10 (Central Shenandoah PDC, 

13 lots) 

0.893 6.178 6 15 Unbiased/ 

Homoscedastic 

6c -136.688 + 0.024 * Rad5_JobsLT10Mi + 

3.516 * CommuteTime5 (Northern 

Shenandoah PDC, 12 lots) 

0.898 13.609 13 39 Unbiased/ 

Homoscedastic 

Occ. = occupancy. 
a Model, adjusted R2, standard error, mean occupancy, and residuals are based on the entire dataset. 
b |Mean error| is based on applying an earlier model, slightly different from that shown, developed from just 70% of 

the data to the remaining 30% testing dataset. 
c Model is recommended for use. 
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The decision as to whether to use a district model (Model 4) or the two PDC models that 

comprised the district (Models 5 and 6) hinges therefore on how one interprets the variables in 

the model.  For the Central Shenandoah PDC (Model 5), these variables suggest a lot’s 

occupancy is a function of its attractiveness to carpoolers, given the two variables of the number 

of commuters traveling a long distance (more than 50 miles) and the number of carpoolers.  For 

the Northern Shenandoah PDC, one seemingly related variable (the length of the commuting 

time) and one very different variable (the number of jobs nearby) influenced demand.  Thus. the 

two models appeared to identify characteristics that were applicable to each PDC.  The benefit of 

this segmentation by PDC was also supported by the fact that two of the three variables in Model 

4 (one relates to commute time and one relates to employment) are similar to the two variables in 

Model 6 and yet Model 6 has a lower standard error than Model 4, even with a higher mean 

occupancy.  Both PDC models met all six criteria. 

 

It was initially surprising that Model 4 showed that the availability of transit service was 

a significant determinant of lot availability whereas this variable was missing in Models 5 and 6.  

However, of the 25 lots in the Staunton District, only 1 (Crooked Run) had transit service, and 

the occupancy of that lot was 131—higher than any other lot in the district and roughly 30% 

higher than the next highest lot, with an occupancy of 103.  After segmentation by PDC, Model 6 

suggested that other variables for the PDC in which this lot is located, such as commute time 

(where the lot has the fourth highest commute time in the PDC), suffice for explaining 

occupancy.  Thus, Models 5 and 6 are recommended for this PDC. 

 

 

 

DISCUSSION 

 

 The results may be considered across six dimensions:  (1) the failure of existing models 

when applied to Virginia sites; (2) the need for site-specific factors to forecast occupancy 

successfully; (3) the infeasibility of time series modeling; (4) the use of the models for 

forecasting demand; (5) the impacts of uncertainty on reported results; and (6) shorter-term 

future research needs. 

 

 

The Failure of Existing Models for Virginia Sites 

 

The application of the existing diversion model generally yielded results that could not be 

used in Virginia.  Some clues about why this model failed are evident from both the literature 

and the earlier experience of TRP members.  FDOT (2012) stated that the approach is best 

applied in areas where there is a limited number of commuting roadways because as the number 

of commuting roads increases, the accuracy of the forecast demand will decrease.  TRP members 

had found that a modified version of the diversion model used by FDOT (2012) overestimated 

demand (in the Fredericksburg District) and underestimated demand (in the Staunton District).  

That modified version adds or subtracts an average error to the forecast based on experiments 

with several lots in the same district.  Thus, it is not surprising that direct application of the 

existing diversion model could not work well in the remaining seven districts.  This observation 

was not limited to Florida:  the research team also considered adapting a model developed for 
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Washington State’s King County (Spillar, 1997); however, the variables used in the King County 

model showed very different correlations than those found for the comparable Northern Virginia 

District variables. 

  

The second set of models that calibrated parameters a and b (where a was the coefficient 

for the peak period traffic volume for the road(s) that provided a direct entrance to the lot and b 

was the coefficient for the peak hour traffic volume for the road within 2.5 miles of the lot that 

had the highest ADT) yielded better results.  However, the testing error for such models 

remained large: in only four districts (Bristol, part of Fredericksburg, Hampton Roads, and 

Salem) was the mean testing error less than the mean occupancy.  Of the 22 recalibrated models 

(two for each district except four for Fredericksburg and Hampton Roads districts, which were 

subdivided into high and low population density areas), the p-values were not significant except 

for 3 of the models, which were in the Bristol, Lynchburg, and Staunton districts.  Further, for 

those 22 models that relied exclusively on VpeakK, VprimeK, VpeakPHF, or VprimePHF, the 

median ratio of mean testing error to mean occupancy was 1.1 (an example is the Richmond 

District with 1 such model that incorporated the K-factor, giving a mean testing error of 80 

compared to a mean occupancy of 72). 

 

Interestingly, the two variations of the recalibrated diversion model used by the research 

team did not have a material difference.  As discussed earlier, the original diversion model 

employed by FDOT (2012) used the K-factor to calculate VpeakK and VprimeK.  Because it was 

initially easier for the research team to obtain the PHF, the team replaced the K-factor with the 

PHF in the recalibrated method, obtaining VpeakPHF and VprimePHF.  The research team had 

postulated that possibly the PHF could be a surrogate for congestion.  Although the correlation 

between the K-factor and the PHF was strikingly low (-0.03), the correlation between VpeakK 

and VpeakPHF was 0.992 (p < 0.01) based on the 297 park and ride lots in Virginia, suggesting 

that the key discriminator in the second set of models was ultimately the traffic volumes—both 

the ADT adjacent to the lot (e.g., Vpeak) and the ADT for the heaviest traveled facility within 

2.5 miles of the lot (e.g., Vprime).   

 

 

The Need for Site-Specific Factors 

 

The third, fourth, and fifth sets of models revealed that some variables have limited 

explanatory power.  That is, occupancy is linearly correlated with certain variables (or certain 

combinations of variables), but this occupancy is influenced by site-specific factors not included 

in the model.  One clue that such factors are missing is the pattern displayed by the residuals:  if 

the sign of the error is unevenly distributed (e.g., biased such that residuals tend to be positive or 

negative) or if size of the error is uneven (e.g., heteroscedastic such that the variance changes as 

the size of the prediction changes), then the reason might be that a key variable is missing.  In 

part through judicious selection of independent variables, the research team was able to develop 

models that were unbiased and homoscedastic with one exception:  the model for the 30 lots in 

the Fredericksburg District that were in low population density areas (about 10% of Virginia’s 

lots) as shown in Table 10 (see Model 9).  
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The value of replacing the VDOT districts in some cases with other appropriate 

commuting boundaries, such as the PDC or the MPO, was demonstrated in five of the nine 

VDOT districts—Bristol, Culpeper, part of Fredericksburg, Salem, and Staunton—where the 

TRP had suggested that perhaps in some locations, but not all, park and ride lot demand was 

influenced by long commutes.  This was indeed the case for the park and ride lots in the Bristol 

District, where demand for lots in the Lenowisco PDC was associated with the number of 

commuters having a job more than 50 miles away, yet demand was not associated with far-flung 

commutes for lots in the Cumberland Plateau and Mount Rogers PDCs.  In several of the PDC 

submodels, different factors explained occupancy than were thought to be the case with the 

district model; for instance, for the Staunton District, the district-wide model suggested transit 

service was a differentiator.  However, when this district model was disaggregated into two 

submodels that aligned with the PDCs, it was found that commute time and commute distance 

were better indicators of occupancy. 

 

If the models explained all of the variations in the observed occupancy, one would expect 

certain variables always to have a positive coefficient, such as the traffic variables, and the 

intercept always to be zero.  However, in some cases, the best performing model nonetheless had 

variable signs that appeared counterintuitive.  This means that additional factors not captured by 

the model explained some portion of the variation in occupancy rates.  Although one can 

formulate possible reasons for these counterintuitive variables, one cannot prove them with the 

model alone.  For example, the best performing model for the Rappahannock-Rapidan PDC 

showed a negative coefficient for the number of carpoolers within 2.5 miles of the lot 

(unexpected) along with a positive coefficient for the number of transit riders (expected).  The 

model by itself did not indicate why this negative coefficient resulted.  (One possible but 

unproven reason is that, at this particular site, an increase in carpools corresponds with a 

reduction in transit riders.  Based on the 2001 National Household Travel Survey, Plotz et al. 

[2010] found that almost half (48%) of work-related HOV2 trips were made by members of the 

same household.  If such an observation were applicable at this particular site, then one would 

expect the substitution of carpoolers for transit riders to reduce demand for spaces at the lot.  

However, the model cannot show causation and thus cannot prove this reason is valid.)  That 

said, often the signs were plausible.  For example, one may consider the best performing model 

for the high population density portion of the Hampton Roads District where the coefficient was 

positive for persons living within 2.5 miles of the lot where their jobs are 25 to 50 miles away.  

Logically, one would expect an increase in commuters with relatively far-off jobs to increase 

park and ride lot demand. 

 

The models also revealed some surprises regarding the determinants of occupancy.  

Although several relationships were found as expected (e.g., commute length increases 

occupancy), it was surprising that variables representing distance to employment centers did not 

have a significant impact on occupancy as reflected in the models with the exception of a small 

number of lots that did not offer transit service and that were located in the Northern Virginia 

District.  An example of those six variables is given in Figure 14 and Table 18 for one particular 

park and ride lot:  Glenside Drive-Dumbarton.   
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Figure 14. Example of Distances Available for the Glenside Drive-Dumbarton Park and Ride Lot (shown in 

blue).  The lot is 2,769 ft from a block group of 5,000 jobs (shown in red) and is very close to the Dabney 

Industrial Major Activity Center and the Boulevard/Scott’s Addition Major Activity Center. 

 
Table 18. Examples of Distance Variables for the Glenside Drive-Dumbarton Park and Ride Lota 

Variable Name Explanation Value (ft) 

DIST_BG_BigEmp Distance to the nearest block group with at least 5,000 employees 2,769 

Dist_M1 Distance to the VTrans Employment Center for the “Dabney_Industrial” 13,345 

Dist_M2 Distance to the VTrans Employment Center for the 

“Boulevard_Scotts_Addition” 

19,644 

Dist_M3 Distance to the VTrans Employment Center for “Innsbrook” 26,561 

Dist_M4 Distance to the VTrans Employment Center for the “VCU” 28,499 

Dist_Weight Sum of the square roots of the above four distances (Dist_M1, Dist_M2, 

Dist_M3 and Dist_M4) 
587 

a Names in quotation marks are regions as specified by CDM Smith (2020).  Employment centers were calculated by 

the research team based on an overlay of data from CDM Smith (2020) with block groups of employment of 10,000 

or more. 

 

This finding does not mean that employment centers do not affect park and ride lot 

demand generally; however, that variable, as captured by the research team in this study, was not 

usually shown to be a predictor of the number of occupied spaces as found by VDOT’s audit.  

For instance, a review comment regarding this material was that the Glenside Drive-Dumbarton 

lot is heavily used for vanpools that head toward Northern Virginia and Washington, D.C.  That 

particular characteristic, which, makes this lot attractive for those vanpoolers was not explicitly 

captured by the variables in Figure 14. 
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Infeasibility of Time Series Modeling 

 

The large number of lots in the Northern Virginia District, coupled with additional data at 

those locations, offered a unique opportunity to consider a different modeling approach:  

building a time series model.  The errors shown for Model 7 in Table 13, with an average value 

of 164 spaces, suggested that one might have success with a model that simply used historical 

occupancies to forecast a future year occupancy.  Examination of the historical data, however, 

suggested that a time series model was not appropriate with this particular dataset. 

 

Seven of the 108 lots have annual data for each year from 1997-2018 inclusive, as shown 

in Figure 15.  However, there does not appear to be a clear trend for the lots as a whole.  For 

example, the Stone Road lot at U.S. 29 in Centreville saw occupancy almost double from 1997-

2007, plateau from 2007-2010, and then decline steadily by almost 20% from 2010-2018.  By 

contrast, occupancy of the Fairfax County Government Center lot declined for most of the 

observation period, with the 2016 occupancy being about one-third of the 1997 value, but then 

increased dramatically from 2016-2018.  Although there may be some underlying patterns (e.g., 

declines in most lots are evident from 2011-2016), there was no obvious trend that appeared 

suitable for forecasting without additional investigation.  

 

 
Figure 15. Yearly Occupancy Change for 7 Park and Ride Lots in the Northern Virginia District (1997-2018) 
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Figure 16 displays the estimated marginal means (where in this case there were no 

covariates such that the estimated marginal means were simply the occupancies) for 108 

Northern Virginia District park and ride lots for the years 2010, 2011, 2016, and 2018.  No trend 

was evident.  This study did not explain the fluctuations shown in Figures 15 and 16:  one 

possible reason is that the collection of demand values once per year contributed to these 

fluctuations, but it is also possible that there were other factors, such as construction, that 

affected demand at each lot.  Figures 15 and 16 suggest that a time series model is not 

appropriate for this particular dataset. 

 

Presumably, a variety of factors can influence occupancy:  increases in transit ridership, 

improvements in the economy, and expansion of lots (as was the case with the 2018 expansion of 

the Fairfax County Government Center lot) may increase occupancy.  For these reasons, graphs 

such as Figures 15 and 16 that show changes in occupancy will not by themselves indicate model 

feasibility.  However, in part because the graphs also show decreases in occupancy, some of 

which are severe, the problem identified by the TRP and also noted in Mouskos et al. (2007) of 

collecting data only once per year (or less frequently) appears to be a partial reason for why a 

time series model may not be appropriate based on this dataset.   

 

 
Figure 16. Occupancy Values in 2010, 2011, 2016, and 2018 for Select Northern Virginia District Lots.  The  

Limestone Road Lot occupancy in 2018 was 202. 
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Using the Models for Forecasting Demand 

 

There are two different ways to apply the forecast occupancy for each of the district 

models.  One way is suitable for forecasting demand for a new lot that will be built, and the other 

way is suitable for forecasting demand for an existing lot as a function of some change that will 

occur in the future.  Both ways require judgment concerning the appropriateness of the 

independent variables. 

 

Demand Forecast for a New Lot 

 

 To use the model to forecast demand at a new lot, one can use the appropriate model 

shown in Tables 8 through17.  For example, one could suppose that a new park and ride lot will 

be built in a low density location in the Fredericksburg District.  The park and ride lot will have 

lighting but no transit service, will be in a Census block group with 1,000 people per square mile, 

and will have the nearest facility for which a peak hour expansion factor (PHEF) is available 

showing a value of 1.5.  The forecast occupancy for such a lot comes from Table 10 (see Model 

9 therein) and implemented as Equation 20. 

 

= -217.053 + 241.839 * Lighting + 329.448 * NuofTranServicePP + 0.018 * POPDEN 

    + 67.016 * PHEF  

 = -217.053 + 241.839 * (1) + 329.448 * (0) +0.018 * (1,000) + 67.016 * (1.5) 

 = 143                    [Eq. 20] 

 

Demand Forecast for a Change That Will Affect an Existing Lot 

 

It is also possible to use the models to examine how changes in certain variables might 

affect occupancy at existing locations.  For example, the Occoquan Commuter Lot (Old 

Hechinger’s) can be considered.  If the number of buses serving the lot doubles and the average 

ADT is forecast to increase 10%, what is the expected impact on occupancy?  As this lot is in the 

Northern Virginia District, the suggested model is in Equation 21. 

 

(2.488 + 0.298*Bicycle spaces + 0.396*NuofTranServicePP + 0.001 * Average ADT)2   

                    [Eq. 21] 

 

Presently, there are four transit lines and 12 bicycle spaces; the mean ADT for roads 

within 2.5 miles of the lot is 8,733.  Thus, the forecast occupancy is 268, as shown in Equation 

22. 

 

Forecast demand (existing conditions)  

= (2.488 + 0.298*12 + 0.396*4 + 0.001 * 8733)2   

= 268                               [Eq. 22] 

 

 With a 10% increase in ADT (from 8,733 to 9,606) and a doubling of transit service 

(from four to eight buses), the forecast occupancy is 355, as shown in Equation 23.  
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Forecast demand (new conditions) = (2.488 + 0.298*12 + 0.396*8 + 0.001 * 9606)2   

= 355                                                                           [Eq. 23] 

 

 However, at this lot, demand is presently 437.  Thus, the new demand is forecast to be 

roughly 578 (Equation 24).   

 

New demand = Current demand ∗
Forecast demand (new conditions)

Forecast demand (existing conditions)
 

New demand = 437 ∗
355

269
= 578                  [Eq. 24] 

 

 Thus, the increase in transit and ADT may lead to an increase in occupancy from 437 to 

578.  In this case, the change in demand for the existing facility is proportionate to the square of 

the change in transit service and ADT, owing to the nonlinear model recommended for the 

Northern Virginia District.   

 

Necessary Judgment When Using These Models for Forecasting 

 

 One weakness of these models is that they cannot prove causality.  The appeal of some of 

the simpler models, such as the diversion models used by FDOT (2012), is that the presumed 

relationship is at least plausible, especially for the simplest model where occupancy is simply 

some percentage of passby traffic.  For some of the multivariate models herein, the relationship 

is at least plausible, such as an increase in the number of carpoolers living within 10 miles of the 

lot being associated with an increase in occupancy, as was the case in the Central Shenandoah 

PDC. 

  

 In other cases, however, especially with small datasets, some of the observed variables 

may represent other phenomena.  For instance, in the Charlottesville-Albemarle MPO model, an 

overnight parking allowance increases occupancy by 28.  Members of the TRP (Olivia Mobayed, 

personal communication, December 21, 2020) noted that this variable might be a surrogate for 

other factors such as (1) more signage (which might instill greater confidence from patrons); (2) 

the ability to use the lot for other purposes (e.g., some commuter lots are located at parks or other 

attractions); and (3) latent demand.  As another example, it is possible that the number of bicycle 

spaces (in the Northern Virginia District) or the presence of covered bicycle parking (in the 

Hampton Roads District) represent these intangible elements. 

 

For these reasons, care should be exercised when using these models.  For example, 

although the number of transit lines serving the lot was shown to influence demand, one would 

not expect the addition of lesser used service to have the same impact as a fully used service.  

Thus, if new transit service was proposed and one wanted to update the forecast, one would 

consider whether the new service was likely to be used to a similar extent as existing services. 

 

 

Impacts of Uncertainty in Reported Results 

 

 The development of multiple models provides an opportunity to conduct a rough 

uncertainty analysis at each lot.  For example, one can also consider another model developed for 
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the Northern Virginia District park and ride lots that was viewed as credible but not as useful as 

the previous model (Equation 21)  because it is not limited to lots with transit service.  That 

model is shown as Equation 25: 

 

 Occupancy = (-7.614 + 0.330 * Bicycle spaces + 0.616 * NuofTranServicePP 

 + 0.586 * RentOverAllIncome)2                                                 [Eq. 25] 

 

 For the same park and ride lot (Occoquan Commuter Lot), the median monthly rent 

multiplied by 12 and divided by median household income in the 2.5-mile radius catchment area 

is 21.79.  If transit service were forecast to double and there will be a modest increase in rent 

relative to income such that the value of 21.79 becomes 24, Equation 25 yields a forecast of 134 

under existing conditions and 235 for the new conditions.  Further, the ratio of the latter to the 

former multiplied by the existing demand of 437 would suggest a new occupancy of 767, as 

shown in Equation 26: 

 

New demand = 437 *  
235

134
  = 767                                                                              [Eq. 26] 

 

The range of forecasts—that is, that an increase in transit service, ADT, and rent relative 

to income suggests an occupancy changing from a current value of 437 to either 578 or 767—

reflects appropriately the uncertainty with these forecasts.  On the one hand, transit service was a 

significant determinant of occupancy.  On the other hand, even the best model for the Northern 

Virginia District that covered this lot explained only 48% of the variance in occupancy, 

suggesting that the factors here, although significant, are not the only determinants of the 

observed values. 

 

For the models developed herein, the uncertainty tends to increase as the sample size 

decreases—that is, the very decision to develop submodels that are tailored to VDOT districts (as 

opposed to a statewide model), or to develop submodels tailored to PDCs (as opposed to district-

wide models)—increases the uncertainty of the information presented herein.  For instance, the 

mean testing error as reported from two VDOT districts—one case where there were 10 sites and 

one case where there were more than 10 times that number. 

 

 As discussed previously, Model 7 in Table 15 for the Richmond Regional PDC or 

Richmond TPO was examined twice.  The full model was developed that showed the 

model should contain variables:  an intercept, the average ADT, and the PHEF.  Then, 

the model was recalibrated (e.g., the same variables were retained but the coefficients 

changed) based on only seven sites—and the new model was tested on the remaining 

three sites.  Doing this once yielded an error of 113, but doing this a second time 

(e.g., choosing three sites at random again) yielded an error of 38, such that there was 

a 66% change in the mean testing error.  

 

 An earlier version of one of the models for the 108 lots in the Northern Virginia 

District had included the Wiehle Road lot with an occupancy of 0 rather than 2,295, 

as well as an independent variable for “bicycle parking is covered” (which was later 

excluded from the dataset).  That earlier version had also been developed for the 

Northern Virginia District portion of the National Capital Region MPO, which 
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reflected 109 lots.  The models were developed independently but had almost 

identical coefficients.  There was, however, one interesting observation in that the 

mean testing error changed from 301 to 267 depending on which model was used—

not because of differences in the model but because of differences in which sites were 

selected for training versus testing.  In short, this particular exercise showed that 

randomly selecting a different set of sites yielded a change in the testing error of 

about 34/301 or about 11%—a smaller change attributable to the larger number of 

testing sites. 

 

In some cases, the small datasets also hampered an exact determination of whether the 

residuals showed constant variance; for instance, as noted for the Richmond TPO model (Model 

7 in Table 15 for the Richmond District) with only 10 sites, the research team could not 

determine if the model was homoscedastic or heteroscedastic. 

 

 

Future Research Needs 

 

 There are at least two future research directions that could be pursued. 

 

1. As discussed in this report, there were 21 lots for the Northern Virginia District that 

mostly served Metro and VRE facilities.  A follow-up effort that examines these 21 lots could 

consider ridership on the lines (used as a predictive variable by Peng and Mohamad [2005] who 

considered park and ride lots near light rail facilities) and mode choice extracted from the 

regional model (used by the I-95/I-395 Transit/TDM Technical Advisory Committee [2008]). 

Further, coefficients for each line could at least be tested for their predictive power.  Webb et al. 

(2021) sought to determine a model for forecasting which park and ride lot would be used by 

transit users and found that two key predictor variables were (1) lots where the transit time 

relative to the time to drive from home to the lot was as high as possible, and (2) the sum of the 

home to lot distance plus lot to destination distance was as close to the home to destination 

distance as possible.  Although neither variable is surprising in theory, Webb et al. (2021) 

suggested that users might select the lot that best met these two goals even at the expense of 

choosing the lot that minimized total travel time.  Thus, such psychological factors could be 

investigated in a transit-focused study. 

 

2. There may be a need to understand better how occupancy changes on a daily or 

weekly basis.  This need is acute for locations where occupancy may be approaching capacity, 

such as the nine Northern Virginia District lots where occupancy is 95% of capacity or higher, as 

such locations may be experiencing latent demand.  With data collected more than once per year, 

one could also begin to assess whether year-on-year changes reflected structural changes in 

demand or simply random variation.  In some cases these seemed minor (e.g., the database 

showed occupancy changed from 58 to 55 at a Henrico County lot (intersection of Parham Road 

and Fordson Road) between the 2016 survey and the 2018-2019 survey), but in other cases these 

changes were dramatic, such as the occupancy shift from 196 to 280 during the same period at 

another Henrico County lot (Gaskins Road and Mayland Drive). 
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CONCLUSIONS 

 

 It is infeasible to apply models from the literature (FDOT, 2012) directly to Virginia, as such 

models yielded errors from 14 to 141 times the mean occupancy.  Error is the difference 

between the forecast occupancy and the observed occupancy for a separate testing dataset 

that was not used to build the model.  Table 7 showed that direct application of such models 

yielded errors that were typically dozens of times larger than the observed occupancy for 

each VDOT district.  For example, for the Culpeper District, direct application of the existing 

diversion model gave a mean error that was 78 times higher than the mean occupancy.  This 

finding that calibration was essential was also noted by Nungesser and Ledbetter (1987), who 

found that recalibration of the diversion method adapted by FDOT (2012) materially changed 

the diversion parameters. 

 

 Generally, the use of site-specific traffic-related variables can yield forecast errors that 

range from roughly 0.3 to 1.8 times the mean occupancy.  For example, in the Hampton 

Roads District, where the mean occupancy was 41 (Table 11), inclusion of the maximum 

ADT of any facility within 2.5 miles of the park and ride lot yielded a mean testing error of 

14; hence, error/occupancy = 0.3.  In the Culpeper District, however, the use of the same 

variable led to a mean error of 29, which was 1.8 times the district’s mean occupancy of 16 

(Table 9). 

 

 The inclusion of socioeconomic variables further reduced forecast errors in a minority of 

cases.  In the Bristol, Salem, and Staunton districts, the development of models with 

independent variables that considered characteristics such as rent relative to income, transit 

service availability, commute time, number of transit riders, or jobs (with the variables 

referring to either a 2.5-mile or 5.0-mile radius of the park and ride lot) helped reduce the 

ratio of the error/occupancy to values of 0.20 (Salem), 0.25 (Bristol), and 0.35 (Staunton).  In 

the Fredericksburg District, including socioeconomic variables (e.g., transit ridership, 

population density, and number of transit lines serving the lot) and developing two separate 

models for the rural and urban areas based on population density helped reduce the 

error/occupancy ratio from 0.8 (when only traffic variables were used) to 0.2 (see Table 10). 

 

 The development of models tailored to some type of anticipated commuting boundary rather 

than an administrative boundary improved models in some cases.  For 114 (more than one-

third) of the 297 park and ride lots, some element of model performance was improved by 

explicitly replacing the VDOT district boundary with the PDC boundary or the MPO 

boundary.  Although such boundaries are not a perfect surrogate for commuting patterns, 

they can be more appropriate than the VDOT district boundary for envisioning the travel 

market in some locations.  In the Culpeper District, the aforementioned error/occupancy ratio 

was reduced from 1.8 to 1.5 and 0.9 by splitting the district into models for the 

Rappahannock-Rapidan PDC and the Thomas Jefferson PDC.  In other cases, the 

improvement was not as dramatic but was helpful:  for example, using separate models for 

the PDCs of Lenowisco, Cumberland Plateau, and Mount Rogers yielded a substantially 

better adjusted R2 and a lower standard error than the district model. 
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 The best models usually met most, but not all, of the ideal criteria for a good model.  Six 

idealized criteria were used to judge models once statistically significant (p ≤ 0.05) variables 

were built:  (1) less than one-half of the explanatory power is in the intercept (as opposed to 

the independent variables); (2) coefficients are logical and do not pose an equity challenge 

for VDOT should they use the models to make investment choices; (3) the standard error is 

less than one-half the mean occupancy; (4) the testing error is less than one-half the mean 

occupancy; (5) the coefficient of determination (adjusted R2) is higher than for other models; 

and (6) residuals demonstrate lack of bias and constant variance.  Typically each district’s 

best models met five of these criteria; for example, in the Salem District, the model for the 

lots in the Roanoke Valley Allegany Regional Commission met all criteria except the fourth, 

where the mean testing error (14) was more than one-half the mean occupancy (25).  The 

most challenging district for developing a model was for the portions of Fredericksburg that 

were not within the Middle Peninsula PDC (where four criteria were met); the best district 

was probably Staunton, where both the Northern Shenandoah and Central Shenandoah PDCs 

met all six criteria. 

 

 There was no single best way to develop models for forecasting occupancy. Although the 

techniques of site-specific calibration, selection of different socioeconomic variables, use of 

commuting rather than administrative boundaries, and consideration of a nonlinear model 

each had a role in improving model performance, no single technique worked for all cases.  

For example, a nonlinear model was suitable in only one case—the Northern Virginia 

District—where other approaches had failed.  Further, the use of MPO boundaries as a 

commute shed and the inclusion of the distance to the nearest employment center also did not 

improve model fit.  In sum, the best models for the 297 park and ride lots were developed as 

follows (the “14-19” reflects the fact that for five lots in the Lynchburg District, one could 

use either those the district model or the Thomas Jefferson PDC model):  

 

 Develop a simple linear model applicable to the entire VDOT district:  14-19 lots. 

 Develop separate linear models for high and low population densities:  61 lots. 

 Develop a linear model applicable to the PDC or MPO:  114 lots. 

 Develop a nonlinear model (later segmented into two submodels):  87 lots. 

 No suitable model was found:  21 lots. 
 

 The best models confirmed some, but by no means all, a priori expectations of key influences 

of occupancy.  When the best models were considered, there were several cases where 

variables expected by the research team to affect demand were indeed found to be 

statistically significant; examples include some form of traffic volume (affecting demand for 

58 lots); congestion as indicated by the PHEF (49 lots); the availability of amenities such as 

lighting (44 lots) or number of bicycle spaces (78 lots); and transit-related variables, such as 

availability of service (122 lots) or persons using transit (29 lots).  However, the best models 

also showed a few surprises; for example, for 14 lots, the number of carpoolers was forecast 

to reduce occupancy (perhaps because of an interaction effect with transit service that 

increased occupancy); for 5 lots the number of transit riders reduced occupancy; and notably, 

the distance to major employment centers (Figure 14) was found to be significant for only 9 

lots in the Northern Virginia District that did not offer transit service.  In particular, it was 
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noteworthy that there was no single variable that was useful for forecasting demand at all 297 

lots. 

 

 The best models based on the methods used in this study may be more suitable for identifying 

the expected impact of a future trend than for making an exact forecast for a brand new lot.  

For example, two recommended models can be considered:  that of the Richmond District 

(average error of 45 spaces in Table 15), and that of the Lenowisco PDC (average error of 5 

spaces in Table 8).  Given that the former has an average occupancy of 72 and the latter has 

an average occupancy of 8, each of these models has an error/occupancy ratio of 0.63.  Thus, 

using these models to forecast the occupancy of a new lot built in either location will yield a 

forecast error greater than one-half the occupancy.   However, when the site-specific 

adjustment method discussed previously is used, each model can incorporate the impact of 

how changes in future key variables may affect occupancy.  For instance, in the Richmond 

District, the finding that average ADT (within 2.5 miles of the park and ride lot) is significant 

suggests that an increase in an average ADT of 1,000 will in that area yield an increase in 

occupancy of about 6 spaces.  The Lenowisco PDC model suggests another trend:  an 

increase of 100 commuters who live within 2.5 miles of the lot who have jobs that are more 

than 50 miles away will increase forecast occupancy by about 8.  Thus, these models may 

also be useful for forecasting the expected changes of key variables at existing lots. 

 

 Multiyear trends in occupancy could not be detected with the data available.  Figures 15 and 

16, which are based on data collected once per year or less, do not show a consistent 

multiyear trend.  One possible explanation is that there truly is no trend in occupancy.  

Another possible explanation is that a more frequent data collection program might allow one 

to isolate different sources of variation (seasonal, random, and yearly) in order to detect 

longer-term trends. 

 

 

RECOMMENDATIONS 

 

1. The VDOT TMPD’s Multimodal Section should consider using one of the following two 

approaches to forecast park and ride lot demand provided the lot does not solely serve 

passengers using the VRE or the Metro: (1) one of the suggested models shown in Table 19 

provided in the form of a spreadsheet, or (2) a custom model developed as part of a site-

specific study.  The reason for the first is that all models shown in Table 19, provided to 

TMPD in the form of a spreadsheet, incorporate variables that are shown to significantly 

affect park and ride lot demand (p ≤ 0.05).  This recommendation does not suggest that 

TMPD develop new models; rather, it suggests that TMPD use models developed in this 

study unless there is a desire to create new models.  The reason for the second is that this 

study also showed that factors in addition to the variables identified in this study also may 

affect park and ride lot demand, and thus, if desired, new models could be developed.  The 

models in Table 19 are not suitable for the 21 lots that mostly serve VRE and Metro shown in 

Table 14, along with the Horner Road Commuter Lot and the Ballston Public Parking 

Garage.   
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Table 19. Recommended Models for Application 
District Location Model 

Bristol Lenowisco PDC 1.359 + 0.082 * Rad2_JobsGT50Mi 

Cumberland Plateau PDC 2.099 + 0.018 * Closest ADT - 0.362 * VpeakK+ 0.004 * 

Rad5_JobsLT10Mi 

Mount Rogers PDCa -7.006 + 0.247 * TransitRiders2 + 0.004 * VprimeK 

Culpeper Charlottesville-Albemarle 

MPO 

-4.107 + 27.798 * OvernightParkingAllowed + 0.009 * 

TransitRiders2  

Non-MPO portion of the 

Thomas Jefferson PDCb 

2.725 + 0.042 * Rad2_JobsLT10Mi  

 

Rappahannock-Rapidan 

PDC 

6.141 – 0.065 * Carpoolers2 + 0.059 * TransitRiders2 + 0.005 

* Rad5_Jobs10_to_24Mi + 8.229 * Lighting 

Fredericksburgc Middle Peninsula PDC c 1.872 * RentOverAllIncome2 – 0.999 * 

AvgPctOfRentIncomeOnRent5 

Population density  

>2396  people/mile2 

1931.706 - 1.949 * TransitRiders2 + 0.000256 * POP 

Population density < 2395  

people/mile2 

-217.053 + 241.839 * Lighting + 329.448 * 

NuofTranServicePP +0.018 * POPDEN + 67.016 * PHEF 

Hampton Roads Population density > 5375 

people/mile2  

 

-541.193 + 0.052 * Carpoolers2 + 0.252 * 

Rad2_Jobs25_to_50Mi 

Population density 

 < 5374 people/mile2 

8.341 + 0.000262 * Max ADT  

(low population density, 25 lots)   

Lynchburgb any  -1.472 + 0.475 * PHEF + 0.002 * Average ADT + 0.000049 * 

POP5 

Northern 

Virginiad 

Lots with transit service (2.488 + 0.298 * Bicycle Spaces + 0.396 * 

NuofTranServicePP + 0.001 * Average ADT)2  

Lots without bus service (2.844 - 0.000071 * Dist_M2 + 1.128 * DTNearestP)2 

Richmond Any 4.083 + 0.006 * Average ADT + 151.906 * PHEF 

Salema New River Valley PDC  2.340 + 67.177 * TransitServiceAvailable + 0.000161 * POP5 

Roanoke Valley-Alleghany 

PDC  

5.849 + 0.015 * Rad2_Jobs25_to_50Mi + 48.731 * 

TransitServiceAvailable 

Staunton Central Shenandoah PDC 0.516 + 0.027 * Rad2_Jobsto50Mi + 0.004 * Carpoolers10 

Northern Shenandoah PDC -136.688 + 0.024 * Rad5_JobsLT10Mi + 3.516 * 

CommuteTime5 
a One lot in the Mount Rogers PDC is in the Salem District.  For that one lot, the Mount Rogers mode should be 

used. 
 b Five lots in the non-MPO portion of the Thomas Jefferson PDC are in the Lynchburg District.  Either model is 

suitable for these five lots, 
c In the portion of the Fredericksburg District covered by the Middle Peninsula PDC, the latter model is preferable in 

terms of showing a lower testing error.  However, if the equity concern of that model’s last term is problematic, then 

low population density Fredericksburg model could be used instead. 
d The Northern Virginia District models are not applicable for the 21 lots (see Table 14) that exclusively serve Metro 

and the Virginia Railway Express as well as the Ballston Public Parking Garage and the Horner Road Commuter 

Lot. 

 

Figure 17 shows the recommended models to use based on VDOT district, PDC, and MPO 

boundaries.  When applying the models in Table 19 to an existing lot, users should consider 

incorporating existing occupancy information, as demonstrated in Equation 23.  If the reason 

for generating the forecast is that some key independent variable is expected to change, such 

as an amenity at the lot, the introduction of transit service, or nearby commuter 

characteristics, the approach shown herein can help account for site-specific factors at the 

park and ride lot.  For the two districts where different models are chosen based on 
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population density, the question arises as to what approach one should use if the area is low 

density at present but will be high density by the time the lot is built.  Logically, one would 

use the higher density model, and the coefficients appear to support this approach.  For 

instance, in Hampton Roads, the highest ADT within 2.5 miles of the lot is the key variable 

for lower density lots, but for higher density lots, the key variables become carpool use and 

the number of commuters with jobs that were farther away (25 to 50 miles). 

 

 
Figure 17. Recommended Models for Application.  There are 5 lots in the rural portion of the Thomas 

Jefferson PDC that are also in the Lynchburg District.  For those lots, both models are appropriate.  No 

model has been developed that fits the 21 Northern Virginia District lots in Table 14 that exclusively serve 

Metro or the Virginia Railway Express.  For the two areas marked “Salem,” there are no park and ride lots; 

if new lots were to be constructed in those locations, one should consider adapting the adjacent models for 

Mount Rogers, New River Valley, or Roanoke Valley Alleghany.  PDC = planning district commission. 

 

2. The VDOT TMPD’s Multimodal Section should collect occupancy samples more than once 

per year.  Mouskos et al. (2007) noted that New Jersey’s use of “only one visual survey per 

year is inadequate” because it does not allow one to capture variance by time of day or day of 

week.  This same limitation also applies to the database available for this study.  Cheu et al. 

(2012) supported multiple data collection instances per day, noting that a binary logit model 

that forecasts demand may not account for the fact that patrons will not use the facility at the 

same time (and if the lot is above capacity, latent demand will be missed).  Forecasts 

generally do not account for such perturbations:  for the Northern Virginia District, BMI et 

al. (2003) had forecast that demand would increase by about 50% from 2001-2020; however, 

data from 1997-2018 generally did not suggest a smooth linear increase (see Figures 15 and 

16).  Thus, more sampling can at least indicate an expected amount of variation at a given lot.  

Although the collection of additional. more frequent samples does not guarantee greater 

predictive power, the facts that others have observed such a need and the large variation 

shown in occupancies when data are collected only once per year suggest that this 

recommendation may yield better models for forecasting. 
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IMPLEMENTATION AND BENEFITS 

 

Implementation 

  

The chief effort involved in implementing Recommendation 1 is the development of 

spreadsheets that not only allow model application but also show the range of values.  In this 

regard, spreadsheets have been developed to allow forecasters to apply these 19 models in 

different regions of Virginia.  Forecasters can use the spreadsheets to forecast demand for a new 

lot (as done in Eq. 20) or they can use the spreadsheets to forecast demand as a function of a key 

change in some variable (as done in Eqs. 21-24).  Figure 18 shows an excerpt of the spreadsheet 

that applies the example shown in Equations 21 through 24, where the impact of increased transit 

service and ADT for an existing lot is estimated.  In future years, the values of the independent 

variables would need to be updated (e.g., in 2025, ADTAverage may have a different value than 

in 2020), but the spreadsheets can still be used provided the input data are updated. 

 

The chief effort in implementing Recommendation 2 is the cost of data collection.  

Although more data are always desirable, a starting point could be to collect the data at least 

quarterly; this would help one capture some of the random variation.  Then, with additional 

resources, one could begin to focus more intense efforts on higher occupancy lots, especially 

those where demand may be approaching capacity. 

 

In the past, the cost for a site visit that included occupancy and other lot characteristics 

was on average $500 per lot.  In theory, therefore, implementing Recommendation 2 would 

increase data collection costs for VDOT.  However, there may be opportunities to offset these 

additional expenses if certain data elements do not have to be collected with each visit or if 

technologies, besides manual counts, can be implemented; Dey et al. (2017) in a Washington, 

D.C., study, evaluated a variety of detection types such as closed-circuit television and cameras 

with global positioning systems and indicated that several of these technologies “show promise” 

(albeit for the case of on-street parking). 

 

 
Figure 18. Example of Spreadsheet Implementing the Model Shown in Equations 21-24 

 



66 

 

Benefits 

 

Park and ride lots have a wide range of agency costs depending on the price of land, 

whether the lot is owned outright or leased from other entities, whether the agency contributes to 

the cost of the lot, and the type of amenities provided at the lot.  The Texas Transportation 

Institute (2020) reported that the new construction of park and ride lots can range from $30,000 

to $50,000 per space.  Park and ride lots can also yield notable mobility benefits that have a 

public impact.  For example, if a lot enables a two-person carpool for a 20-mile commute, such a 

lot eliminates a bit more than 16 kg of carbon dioxide emissions per commuter per day assuming 

typical CO2 emissions of 404 grams/vehicle (U.S. Environmental Protection Agency, 2018).  

Thus, being able to forecast where demand is likely to increase can help VDOT make these 

costly, but potentially highly beneficial, investments more wisely.  Although the implementation 

of Recommendation 1 is designed to help forecast demand immediately, the implementation of 

Recommendation 2 could potentially improve forecasting accuracy in the longer term.  The best 

models developed for this study have a median accuracy of about 56% (testing error divided by 

mean occupancy); it is possible that better data could yield more accurate models, especially in 

cases where true demand is above the number of spaces at the lot. 
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APPENDIX 

 

SUMMARY OF DATA PROCESSING 

   

This appendix illustrates the types of computations performed for this study and the 

resultant data.  Key processing details are presented for only five variables, but the methods 

developed herein were generally applied to other sources.  The manner in which these variables 

are processed is summarized in six steps: 

 

1. Acquire data. 

2. Compute values for variables.  

3. Import variables into a GIS environment. 

4. Implement appropriate scripts. 

5. Export variables for use with statistical software. 

6. Develop district-specific variables. 

 

Acquire Data 

 

Data were provided from several sources.  For example, four ACS files were used to 

obtain, for each Census tract, five variables:  average commute time, total number of carpoolers, 

total number of transit users, median rent divided by median household income, and average 

percent of renters’ household income spent on rent.  Each file was based on the 5-year period 

ending in 2018 and thus provided coverage for all Census tracts in Virginia.  Three of the files 

were provided by Mobayed (2020b), and one file was obtained from the U.S. Census Bureau 

(2020) directly.  The variables extracted were as follows for each of the 1,907 Virginia Census 

tracts: 

 

Table DP04, Selected Housing Characteristics [midpoints in brackets] 

 Median Rent (DP04_0134E)  

 Percent spending less than 15% of income on rent (DP04_0137PE)  [7.45] 

 Percent spending 15.0-19.9% of income on rent (DP04_0138PE)  [17.45] 

 Percent spending 20.0-24.9% of income on rent (DP04_0139PE)  [22.45] 

 Percent spending 25.0-29.9% of income on rent (DP04_0140PE)  [27.45] 

 Percent spending 30.0-34.9% of income on rent (DP04_0141PE)  [32.45] 

 Percent spending 35% or more of income on rent (DP04_0142PE)  [37.5] 

 

Table S1903, Median Income in the Past 12 Months (in 2018 Inflation-Adjusted Dollars) 

 Median household income (variable S1903_C03_001E) 

 

Table S0801 Commuting Characteristics by Sex 

 Total number of workers age 16+ (variable S0801_C01_001E) 

 Percent of workers who carpool (variable S0801_C01_004E) 

 Percent of workers who use transit (variable S0801_C01_009E) 

 

Table B08303, Travel Time to Work 

 Number of workers for whom a commute time is available (B08303_001E) 
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 Number of workers in each of the following travel time bins [midpoints in brackets] 

 Less than 5 minutes   B08303_002E  [2] 

 5 to 9 minutes   B08303_003E  [7] 

 10 to 14 minutes  B08303_004E  [12] 

 15 to 19 minutes  B08303_005E  [17] 

 20 to 24 minutes  B08303_006E  [22] 

 25 to 29 minutes  B08303_007E  [27] 

 30 to 34 minutes  B08303_008E  [32] 

 35 to 39 minutes  B08303_009E  [37] 

 40 to 44 minutes  B08303_010E  [42] 

 45 to 59 minutes  B08303_011E  [47] 

 60 to 89 minutes  B08303_012E  [74.5] 

 90+ minutes   B08303_013E  [100] 

 

Although there are 1,907 Census tracts, data are missing from 2% to 5% of these tracts as 

follows: 

 

 For average commute time, total number of carpoolers, and total number of transit 

users, 32 tracts had no population, leaving 1,875 tracts (of 1,907 total tracts) with data 

for these variables. 
  

 For median rent divided by median household income, there were 1,835 tracts with 

data.  The reason was that for income, 1,868 tracts had no income data such that 

income would be reported as a “Null” value (an example was 51179010201).  For 4 

of the 1,868 remaining tracts, income was shown as “250,000+” and “2,500-,” which 

the research team changed to “250,000” and “2,500,” respectively.  For rent, only 

1,835 tracts had data.  For 9 of those tracts, rent was shown as “3,500+,” which the 

research team changed to “3,500.”  Then, when monthly rent was multiplied by 12 

and then divided by income such that rent as a portion of income was reported, 1,835 

values resulted (since cells with no rent data had to be excluded).  

 

 For average percent of renters’ household income spent on rent, 1,869 tracts had 

data.  

 

Compute Values for Variables 

 

For each Census tract, the five variables were then determined as follows: 

 

1. Average commute time was determined by multiplying the number of commuters 

(variables B08303_002E through B08303_013E) by the travel time in brackets and 

then dividing the entire sum by the total number of commuters (B08303_001E). 

 

2. Total number of carpoolers was determined by multiplying the total workers 

(S0801_C01_001E) by the percent who carpool (S0801_C01_004E). 
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3. Total number of transit users was determined by multiplying the total workers 

(S0801_C01_001E) by the percentage who use transit (S0801_C01_009E). 

 

4. Median rent divided by median household income was determined by multiplying the 

median rent (DP04_0134E) by 12 and then dividing by the median household income 

(S1903_C03_001E).  The median rent is for renters only, and the median household 

income includes renters and non-renters.  

 

5. Average percent of renters’ household income spent on rent was determined by 

multiplying the percent of people in each tract in each bin for portion of income spent 

on rent (DP04_0137PE through DP04_0142PE) by the portion in brackets. 

 

 For example, Tables A1, A2, A3, and A4 illustrate how these variables are computed 

using Census Tract 51540000700. As shown in Table A1, the average commuting time is 15.9 

minutes.  Table A2 shows the number of carpoolers (129.8) and transit users (66.8) in that tract. 

Table A3 shows that the median rent divided by median household income was 16.36%.  Table 

A4 shows that the average percent of renters’ household income spent on rent was 27.6%.  These 

latter two variables reflect different information:  Table A3 is median rent relative to all 

household incomes (some of which are renters and some of which are owners), whereas Table 

A4 is rent as a portion of that householder’s income.  These variables are also shown in Figure 

A1. 

 
Table A1. Computing Average Commuting Time for Census Tract 51540000700 

Time Bin Midpoint Frequency Product 

0-4 minutes 2 42 84 

5-9 minutes 7 388 2,716 

10-14 minutes 12 561 6,732 

15-19 minutes 17 294 4,998 

20-24 minutes 22 258 5,676 

25-29 minutes 27 35 945 

30-34 minutes 32 51 1,632 

35-39 minutes 37 10 370 

40-44 minutes 42 17 714 

45-59 minutes 52 26 1,352 

60-89 minutes 75 26 1,937 

90+ minutes 100 0 0 

Total 1,708 27,156 

Average Commute Time  15.9 

 

Table A2. Computing Carpoolers and Transit Users for Census Tract 51540000700 

Variable S0801_C01_001E S0801_C01_004E S0801_C01_009E 

Description Number of Workers 

16 years and over 

Percent carpooled Percent public 

transportation 

(excluding taxicab) 

Value 1966 6.6% 3.4% 

Number  129.8 66.8 
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Table A3. Computing Median Rent Divided by Median Household Income for Census Tract 51540000700 

 

Variable 

Median Annual 

Household Income 

Median Monthly 

Rent 

Value $78,565 1,071 

Annual Rent/Annual Income 16.36 

 

Table A4. Computing Percent of Renters’ Household Income Spent on Rent for Census Tract 51540000700 

 

Income Bin 

 

Midpoint 

Percent of People 

in Each Bin 

 

Product 

Less than 15% 7.45% 19.1 1.4 

15.0%-19.9% 17.45% 5.7 1.0 

20.0%-24.9% 22.45% 9.9 2.2 

25.0%-29.9% 27.45% 9.4 2.6 

30.0%-34.9% 32.45% 12 3.9 

35% or more 37.50% 43.9 16.5 

Total   100 27.6 

 

 
Figure A1. Example of Variables at the Census Tract Level 

 

Import Variables Into a GIS Environment 

 

As the data files used a geoid of the form “1400000US51001090100,” a string function 

was performed to remove the “14000000US” from the geoid in order to make it comparable to 

the geoid used by the ACS.  Then, a geographic file of Virginia Census tracts was obtained from 

the ACS geography program website (U.S. Census Bureau, 2020).  That file also offers a geoid 

that enables one to link the geographic data (from the ACS) to the tabular data provided by 

VDOT after one converted one geoid from a text attribute to a numeric attribute.  

 

The lots were then imported into GIS using their latitude/longitude coordinates.  Both the 

lot layer and the Census tract layer were then projected from decimal degrees into Virginia State 

Plane coordinate system and the geodesic areas of the tracts was calculated.  Then, buffers of 2.5 

miles, 5.0 miles, and 10.0 miles were generated around each of the park and ride lots, a spatial 

join between the buffers and the Census layer was performed, and the geodesic areas of the 

resultant polygons was calculated.  
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Implement Appropriate Scripts 

 

Similar types of geoprocessing were performed for the other datasets.  For example, 

using the geodatabase (SmartScale2018_PopEmp_Updated.gdb) provided by Ling (2018), the 

LEP population can be found for each of the 10,073 Census block groups.  The lots were then 

imported into GIS using their latitude/longitude coordinates.  Both the lot layer and the Smart 

Scale Census block group layer were then projected from decimal degrees into the Virginia state 

plane projection.  Then, a 2.5-mile buffer was generated around each of the park and ride lots, a 

spatial join between the buffers and the Census layer was performed, and the LEP population 

was determined by summing the number of LEP persons in this buffer.  These data were 

exported to a spreadsheet for use in the statistical analysis with appropriate scripts being 

executed.   

 

One difference from the socioeconomic variable processing was that the scripting 

performed for the six variables involving distance to activity centers did not require 

manipulations of polygons but did require joins and the use of the update cursor method given 

the need to compute the four closest activity centers for each lot.  Another difference involved 

the commute distance obtained from the OnTheMap application, where commuting data appear 

to be represented as anonymized points where each point represents multiple commuters.  In that 

particular case, the geoprocessing was considerably simpler; one simply tabulated the 52,090 

points by performing appropriate spatial joins between them and the 2.5-, 5.0-, and 10.0-mile 

radii for each lot followed by cleaning the variables and rejoining the feature class to the lots 

feature class.   

 

Scripts needed to be written for the GIS processing as these calculations were repeated 

for each of Virginia’s 297 lots.  The research team found that these operations could generally be 

completed with about 250 lines of scripting, depending on the geoprocessing tools available.    

Scripts are available from the research team. 

 

Export Variables for Use With Statistical Software 

 

 The resultant variables were then exported such that for each park and ride lot, there were 

78 independent variables.  Table A5 provides the name, category, minimum, mean, and 

maximum values for each of these variables in the dataset.  When submodels are being 

developed, the range of possible values is less than that shown in Table A5.  For example, for the 

number of carpoolers within 2.5 miles of the park and ride lot, the values shown in Table A5 

range from a low of 7 to a high of 10,787.  For the high density sites in the Hampton Roads 

District, however, this variable ranged from 2,484 to 4,893.  The spreadsheet that accompanies 

the regional models shown in Table 19 shows the low and high value for the variables used in 

those models, and those ranges will generally be tighter than those shown in Table A5.  
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Table A5. Domains of Independent Variables 
Name Category Average Min. Max. 

Average ADT Traffic 7424  245 32836 

Maximum ADT Traffic 82311 1800 264000 

Sum ADT Traffic 2070648 12472 7535830 

Closest ADT Traffic 13759 40 120000 

Average V/C Ratio Traffic 0.337 0.043 0.545 

K-factor Average Traffic 0.096 0.074 0.156 

PHF Average Traffic 0.9252397 0.88 0.95 

PHEF Traffic 0.602 0 14 

Kclosest Traffic 0.0961849 0.065 0.173 

Kmax Traffic 0.0988179 0.088388 0.11225 

PHFclosest Traffic 0.91 0.88 0.95 

PHFmax Traffic 0.928896552 0.88 0.95 

DIST_BG_BigEmp Land Use 46894 0 342519 

Dist_M1 Land Use 151754 318 1089929 

Dist_M2 Land Use 173191 6673 1090649 

Dist_M3 Land Use 183701 14005 1092017 

Dist_M4 Land Use 193041 17008 1093702 

Dist_Weight Land Use 1445 410 4179 

DTNearestP Land Use 2.97 0.000054 18.57 

NofAdjLot Land Use 3 0 14 

ProximityToIAP Land Use 7.78 0.055 75.54 

ProxToEL  Land Use 60.69 0.11 363.04 

CommuteTime2 Land Use 34.49 18.23 54.25 

CommuteTime5 Land Use 34.65 20.28 48.67 

CommuteTime10 Land Use 35.05 23.19 44.66 

Carpoolers2 Land Use 1878 7 10787 

Carpoolers5 Land Use 6039 25 30061 

Carpoolers10 Land Use 17356 51 64153 

TransitRiders2 Land Use 1460 0 31095 

TransitRiders5 Land Use 4607 0 69600 

TransitRider10 Land Use 15589 0 109599 

Rad2JobsTot  Land Use 16101.76 3 82901 

Rad2JobsLT10M Land Use 7859.285 2 47212 

Rad2Jobs10to24Mi Land Use 5020.124 0 31690 

Rad2Jobs25to50Mi Land Use 1404.111 0 5928 

Rad2JobsGT50Mi Land Use 1818.242 0 14468 

Rad5JobsTot Land Use 46451.89 39 252481 

Rad5JobsLT10Mi Land Use 22763.88 20 125195 

Rad5Jobs10to24Mi Land Use 14318.42 10 85378 

Rad5Jobs25to50Mi Land Use 4098.795 3 17035 

Rad5JobsGT50Mi Land Use 5270.799 2 30464 

Rad10JobsTot Land Use 141430.6 163 563000 

Rad10JobsLT10Mi Land Use 68619.42 57 273573 

Rad10Jobs10to24Mi Land Use 45417.23 63 201031 

Rad10Jobs25to50Mi Land Use 11765.96 22 39611 

Rad10JobsGT50Mi Land Use 15628.02 14 75862 

POP2.5 Demographic 237330 144 1877898 

EMP2.5 Demographic 128226 26 836493 

POP5 Demographic 1764119 3036 9015716 

EMP5 Demographic 856183 614 3871617 

POP10 Demographic 451521 3273 1510888 

EMP10 Demographic 281893 2887 1790271 

AvgPctOfRentIncomeOnRent2 Demographic 26.211 15.187 31.343 

AvgPctOfRentIncomeOnRent5 Demographic 26.045 15.2 30.091 

AvgPctOfRentIncomeOnRent10 Demographic 25.965 15.2 29.698 

RentOverAllIncome2 Demographic 19.779 9.46 40.388 

RentOverAllIncome5 Demographic 19.408 11.999 30.678 
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RentOverAllIncome10 Demographic 18.929 12.61 25.528 

MinorityPop2 Demographic 110634.39 9.424837 1032318.5 

PorvertyPOP2 Demographic 17618.5 50.487422 153859.98 

LEPPop2 Demographic 17437.779 0 186009.05 

EligDisadvPop2 Demographic 278576.16 974.87869 2167457.8 

MinorityPop5 Demographic 713575.98 43.772636 4169689.5 

PovertyPop5 Demographic 99435.468 320.30825 533004.14 

LEPPop5 Demographic 107214.6 0 570880.47 

EligDisadvPop5 Demographic 1780127.9 2843.7905 9011394.1 

MinorityPop10 Demographic 161964.07 105.05716 545528.21 

PovertyPop10 Demographic 25947.025 433.89838 97892.395 

LEPPop10 Demographic 21509.555 0 95303.296 

EligDisadvPop10 Demographic 448401.92 3126 1487049 

POPDEN Demographic 3010.8097 8.347044 72456.204 

OvernightParkingAllowed Facility 0.2226027 0 1 

NuofTranServicePP Facility 2.1541096 0 27 

BikeParkingisCovered Facility 0.1130137 0 1 

Lighting Facility 0.7157534 0 1 

SignCondition Facility 2.5513699 0 4 

CostToPark Facility 0.0342466 0 1 

TransitServiceAvailable Facility 0.5171233 0 1 

 

In addition to the variables shown in Table A5, there were 10 additional facility-related 

variables (see Table A6) that were not included in the final modeling described in the report.  

The reason is that early experiments suggested that these variables were not likely to influence 

occupancy.  In these early experiments, the additional facility-related variables in Table A6 were 

excluded by the stepwise linear regression when building the Virginia district-specific models for 

nine VDOT districts plus one aggregation of Northern Virginia plus the City of 

Fredericksburg.  However, the research team did later include the number of bicycle spaces in 

the lot for the Northern Virginia District. 
 

Table A6. Additional Facility-Related Variables That Were Not Used in Model Development 

Buses Parked The number of buses parked in the lot 

Trucks Parked The number of trucks parked in the lot 

Motorcycles Parked The number of motorcycles parked in the lot 

Illegally Parked Vehicles The number of illegally parked vehicles in the lot 

Bicycle Spaces The number of bicycle spaces in the lot (This was used exclusively in the Northern Virginia 

District nonlinear model after TRP review) 

Bikes Parked  The number of bikes parked in the lot 

Bike Lane/Shared Use Path 

Leads to Lot 

Whether there is bike lane/shared use path leads to the lot 

Yes = 1; No = 0 

Shelter in Lot Whether there is shelter in the lot 

Yes = 1; No = 0 

Number of Auto Entrances The number of auto entrances to the lot 

Number of Auto Exits The number of auto exits in the lot 

Electric Vehicle Charging 

Stations Provided 

Whether the electric vehicle charging is provided in the lot 

 

Develop District-Specific Variables 

 

 As noted in Table 6, in three districts, park and ride lots were categorized based on the 

number of residents per square mile in the block group containing the lot.  Figures A2, A3, and 

A4 show these lots for the Fredericksburg, Hampton Roads, and Richmond districts.  As noted in 

Table 14, lots in the Northern Virginia District that are used for VRE or Metro were identified, 

and these are shown in Figure A5. 
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Figure A2.  High and Low Population Density Block Groups in the Fredericksburg District 
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Figure A3.  High and Low Population Density Block Groups in the Hampton Roads District 
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Figure A4.  High and Low Population Density Block Groups in the Richmond District 
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Figure A5.  Lots in the Northern Virginia District Specific to Metro and VRE 


