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ABSTRACT 

  

 The wireless communication between vehicles and the transportation infrastructure, 

referred to as the connected vehicle environment, has the potential to improve driver safety and 

mobility drastically for drivers.  However, the rollout of connected vehicle technologies in 

passenger vehicles is expected to last 30 years or more, during which time traffic will be a mix of 

vehicles equipped with the technology and vehicles that are not equipped with the technology.  

Most mobility applications tested in simulation, such as traffic signal control and performance 

measurement, show greater benefits as a larger percentage of vehicles are equipped with 

connected vehicle technologies.  

 

The purpose of this study was to develop and investigate techniques to estimate the 

positions of unequipped vehicles based on the behaviors of equipped vehicles.  Two algorithms 

were developed for this purpose: one for use with arterials and one for use with freeways.  Both 

algorithms were able to estimate the positions of a portion of unequipped vehicles in the same 

lane within a longitudinal distance.  Further, two connected vehicle mobility applications were 

able to use these estimates to produce small performance improvements in simulation at low 

penetration rates of connected vehicle technologies when compared to using connected vehicle 

data alone, with up to an 8% reduction in delay for a ramp metering application and a 4.4% 

reduction in delay for a traffic signal control application. 

 

The study recommends that the Virginia Center for Transportation Innovation and 

Research (VCTIR) continue to assess the data quality of connected vehicle field deployments to 

determine if the developed algorithms can be deployed.  If data quality is deemed acceptable and 

if a connected vehicle application is tested in a field deployment, VCTIR should evaluate the use 

of the location estimation algorithms to improve the application’s performance at low penetration 

rates.  This is expected to result in reduced delays and improved flow for connected vehicle 

mobility applications during times when few vehicles are able to communicate wirelessly.  
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INTRODUCTION 

 

The concept of connected vehicles—previously known as IntelliDrive or Vehicle 

Infrastructure Integration—uses advanced wireless communications, global positioning systems 

(GPS), vehicle sensors, and smart infrastructure to allow vehicles and the infrastructure to 

communicate wirelessly.  In a connected vehicle environment, a vehicle equipped with the 

technology can share its location, speed, heading, and many other data in real time with nearby 

equipped vehicles and the surrounding infrastructure via wireless communications.  There are 

several pilot deployments of connected vehicle technology, including test beds in Fairfax 

County, Virginia, and in Blacksburg, Virginia, on the Virginia Smart Road and Route 460 

(Connected Vehicle/Infrastructure University Transportation Center, 2012).   

 

Researchers have developed several transportation applications that use the data from 

connected vehicles to improve safety and mobility, such as traffic signal control (Smith et al., 

2011) and automated incident detection (Barria and Thajchayapong, 2011).  Because of the 

gradual rollout of connected vehicle technologies, researchers often study the effect of different 

penetration rates of connected vehicle technologies on an application’s performance.  In many 

connected vehicle mobility applications, the performance of the application improves as the 

percentage of vehicles equipped with communication devices increases.  For example, the traffic 

signal control algorithm PAMSCOD (platoon-based arterial multi-modal signal control with 

online data) reduced delay by an additional 12% when the penetration rate increased from 20% 

to 60% (He et al., 2012).  Priemer and Friedrich (2009) found a 6.5% improvement in vehicle 

speeds when the penetration rate increased from 10% to 50% in their traffic signal control 

algorithm. 

 

Not only do connected vehicle applications perform better at higher connected vehicle 

penetration rates, many are also unable to outperform traditional applications at low penetration 

rates.  The minimum required penetration rate needed to demonstrate any benefit varies based on 

the application but is typically near 20% to 30%, as seen in Table 1. 

 

The problem of low penetration rates is of particular concern because of the expected 

gradual introduction of connected vehicles.  Were a federal mandate to be issued requiring all 

new vehicles sold in the U.S. be equipped with connected vehicle technologies, the John A. 

Volpe National Transportation Systems Center (2008) estimates that it would take 9 years after a 

before 50% of vehicles on the roadway were able to communicate.  The anticipated penetration 

rate over time is shown in Figure 1. 
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Table 1. Connected Vehicle Applications and Corresponding Minimum Required Equipped Vehicle 

Penetration Rates 
 

Application 

Minimum Equipped Vehicle 

Penetration Rate (%) 

Traffic signal control
a-c

  20-30 

Freeway incident detection
d
 20 

Lane-level speed estimation
e
 20 

Arterial performance measurement
f 

10-50 

Queue length estimation
g 

30 

 
a 
Smith et al. (2011). 

 
b 
He et al. (2012). 

c 
Priemer and Friedrich (2009). 

 
d 
Barria and Thajchayapong (2011). 

 
e 
Rim et al. (2011). 

f
 Li et al. (2008). 

g
 Ban et al. (2011). 

 

 
Figure 1. Anticipated Penetration Rate of Connected Vehicle Capabilities After Federal Mandate, Were One 

to Be Issued, for Installation in All New Vehicles Sold in the U.S. (John A. Volpe National Transportation 

Systems Center, 2008). 

    

The use of aftermarket devices, which can be used to retrofit existing vehicles, may 

shorten this timeline somewhat.  Another option is the use of alternative technologies, such as 

smart phones equipped with GPS receivers.  However, even with these technologies, bandwidth 

shortages and battery life may restrict full adoption.  In any scenario, there will likely be a 

transition period where only a portion of vehicles are equipped.  Researchers have developed 

several ways to supplement connected vehicle data by using video to detect unequipped vehicles 

(Richardson, 2011), but these solutions require additional infrastructure with limited range.  

 

Simulation testing has shown that when more vehicles can report their location, the 

performance of connected vehicle mobility applications improves.  The research presented in this 

report explored two follow-up questions:   
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1. Can the locations of some unequipped vehicles be estimated from the behavior of a 

few equipped vehicles (EVs)? 

 

2. If the answer to Question 1 is in the affirmative, can these estimated locations be used 

to improve the performance of connected vehicle mobility applications? 

 

If both questions can be answered in the affirmative, the performance of some connected 

vehicle applications can be improved at low penetration rates merely by analyzing data from a 

few EVs, estimating the positions of unequipped vehicles, and feeding these estimates back into 

the applications.  These applications’ performances could be improved with minimal associated 

cost. 

 

Several terms with regard to vehicles are used throughout this report and are defined 

here.  

 

• Connected vehicles: the system of wireless communications among vehicles and the 

infrastructure. 

 

• Equipped vehicles: vehicles that are equipped with the necessary hardware and 

software and are participating in the connected vehicle system. 

 

• Unequipped vehicles: vehicles that are not able to participate in a connected vehicle 

system because of a lack of equipment, equipment failure, or bandwidth restrictions. 

 

• Inserted vehicles: vehicles that exist only in a simulation and that represent the 

location algorithms’ estimates of the positions of unequipped vehicles.  

 

 

 

PURPOSE AND SCOPE 

 

A high-level goal of VDOT is to improve safety and traffic flow as effectively and 

inexpensively as possible.  The purpose of this study was to develop and investigate techniques 

to estimate the positions of unequipped vehicles based on the behaviors of EVs in a connected 

vehicle environment.  This study was undertaken in the hope that these techniques, by providing 

sophisticated estimates of unequipped vehicle locations, could improve the performance of other 

proposed connected vehicle mobility applications at low penetration rates. 

 

The objectives of this study were as follows: 

 

1. Develop algorithms to estimate the locations of a portion of unequipped vehicles in a 

connected vehicle environment. 

 

2. Evaluate the performance of these algorithms based on their accuracy and their ability 

to improve the performance of connected vehicle mobility applications. 
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3. Ensure that the algorithms are realistic, feasible, and implementable in a connected 

vehicle environment. 

 

The scope was limited to available, empirical vehicle trajectory datasets and calibrated, 

available simulation data.   

 

 

METHODS 

 

Overview 

 

 Four tasks were carried out to achieve the study objectives: 

 

1. literature review 

 

2. development of freeway and arterial location estimation algorithms 

 

3. development of testing parameters for the developed algorithms 

 

4. testing and evaluation of the developed algorithms. 

 

 

Task 1: Literature Review 

 

The literature was reviewed to determine similar proposed techniques to estimate 

positions of individual unequipped vehicles in a connected vehicle environment at low 

penetration rates.  Additional literature was reviewed to allow a better understanding of car-

following models and connected vehicle technology and to identify connected vehicle mobility 

applications that could benefit from position estimates of individual unequipped vehicles.   

 

 

Task 2: Development of Freeway and Arterial Location Estimation Algorithms 

 

 Two algorithms were developed to estimate the positions of unequipped vehicles based 

on the behaviors of EVs.  One algorithm was developed for freeway environments (where 

vehicles react primarily to other vehicles) and the other for arterial environments (where vehicles 

often queue at traffic signals).  The algorithms were designed to be as generic as possible, with 

minimal calibration to specific road networks. 

 

 

Task 3: Development of Testing Parameters for Developed Algorithms 

 

The next phase of the research plan was to develop the parameters that would be used in 

testing the algorithms.  Many of the parameters were defined early, such as the evaluation 

network, number of simulation repetitions, and connected vehicle application.  Others were 

identified during Task 4, such as sensitivity of an estimated vehicle’s lifespan on freeways. 
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Task 4: Testing and Evaluation of Developed Algorithms 

 

The developed algorithms were tested extensively.  The freeway location estimation 

algorithm was tested using vehicle trajectory data from the Next Generation Simulation 

(NGSIM) project, a field-collected dataset of individual vehicle movements along several 

corridors in the United States (Federal Highway Administration [FHWA], 2010), and the arterial 

location estimation algorithm was tested on data generated from microscopic simulation.  In all 

tested scenarios, multiple simulation runs were evaluated with unique random seeds, and results 

were ensured to be within 10% of the mean at a 95% confidence level.  In addition, various 

penetration rates were tested, ranging from 5% to 100%.  Then, each algorithm was applied to an 

existing connected vehicle mobility application (signal control for the arterial location estimation 

algorithm, and ramp metering for the freeway location estimation algorithm) to determine if the 

location estimation algorithms developed could improve the performance of these applications at 

low EV penetration rates. 

 

 

RESULTS AND DISCUSSION 

 

Task 1: Literature Review 

 

 Several algorithms have been developed to estimate the location of either individual 

vehicles or high resolution vehicle densities based on the behavior of a small subset of sampled 

vehicle trajectories, often referred to as probe vehicles.  Preliminary work focused on estimating 

freeway travel states rather than individual vehicle locations.  The earliest work was based on 

vehicle location and travel time information as determined from cell tower signal triangulation 

(Bargera, 2007; Sanwal and Walrand, 1995; Westerman et al., 1996).  Later work focused on 

much more accurate, although sparsely collected, GPS data (Krause et al., 2008).  Mobile sensor 

data were eventually integrated with point detection data and used to estimate vehicle travel time 

(Nanthawichit et al., 2003). 

 

Herrera and Bayen (2010) used Kalman filtering techniques and Newtonian relaxation to 

integrate point detection and mobile sensors into a high resolution traffic state estimation of a 

freeway.  Their algorithms were evaluated using both empirical ground truth freeway data 

([FHWA, 2010) and actual in-vehicle cell phones with GPS receivers (Herrera et al., 2008).  

They were able to estimate vehicle densities of multilane 120-foot segments with a root-mean-

square error of 1.78 to 2.44 vehicles depending on assumptions, but they did not estimate 

individual vehicle locations, as the goal of their research was a more accurate estimation of 

freeway status between point detectors. 

 

  On arterials, Ban et al. (2011) used the reported travel times of a portion of vehicles 

traveling through an intersection to calculate their individual delays.  This information was then 

used to determine the amount of time each vehicle was in the signal’s queue.  Using this 

information, Ban et al. (2011) could estimate the arrival rate at the intersection and by assuming 

uniform flow rate and constant discharge rate could estimate the total length of the queue with 

only 30% of vehicles reporting their locations.  Their procedure required two restrictive 

assumptions: (1) that the arrival between two vehicles in one cycle was the uniform arrival rate 
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across the entire cycle, and (2) that the penetration rate was relatively high so that there were at 

least two queued vehicles per cycle per approach.  The authors acknowledged that these 

assumptions limit the ability to deploy the system in the field.  In addition, the sampled vehicle 

must first pass a virtual trip line downstream of the intersection, which delays the estimation of 

the queue length by several seconds.  The mean absolute percentage error of the number of 

vehicles in a queue ranged from 21% to 23% during uncongested conditions and from 14% to 

17% during congested conditions.  The algorithm was tested using a participating vehicle 

penetration rate from 20% to 100%. 

 

 Building on the queue length estimation technique, Sun and Ban (2011) attempted to 

predict the locations of and trajectories on un-sampled vehicles from a location upstream of the 

intersection to the stop bar based on the location of approaching vehicles.  They first assumed a 

uniform arrival of un-sampled vehicles between any two consecutive sampled vehicles, rather 

than a uniform arrival for the entire time period as in previous work (Ban et al., 2011).  The 

number of vehicles arriving between two sampled vehicles was also known, implying the 

presence of an upstream detector.  The vehicle arrival rate along with the known signal timing 

was used to estimate the shockwave boundary.  Once the shockwave boundary had been plotted 

on a time-space diagram, the trajectories of un-sampled vehicles were predicted using several 

simplified assumptions: they maintain free flow speed until reaching the back of the queue; come 

to an immediate stop while in the queue; and travel at free flow speed once the queue is 

discharged.  Individual vehicle accelerations were ignored.  The algorithm was tested on 

simulation data, where the root-mean-square error of the time-position of unequipped vehicles 

was found to be 2.8 seconds at a 20% connected vehicle penetration rate and a free-flow speed of 

40 miles per hour (17.9 meters per second).  The algorithm was also tested on the NGSIM data 

(FHWA, 2010), where a root-mean-square error of 8.1 seconds was found at a 20% penetration 

rate. 

 

In summary, of the unequipped vehicle location estimation techniques discussed in this 

literature review, all had one or more of the following three shortcomings: 

  

1. They aggregated estimated vehicle locations spatially.  

 

2. They used unrealistic vehicle behaviors in their models.  

 

3. They did not estimate vehicle movements over a distance beyond a small study area 

of a few meters. 

 

The location estimation techniques developed as part of this research were designed to 

overcome these shortcomings. 

 

 

Task 2: Development of Freeway and Arterial Location Estimation Algorithms 

 

 Two algorithms were developed to estimate the positions of unequipped vehicles, one for 

arterial roadways and one for freeways.  

  



7 

 

Arterial Location Estimation 

 

A four-step procedure was used to estimate the positions of unequipped vehicles:   

 

1. Determine from its observed behavior when an EV is reacting to a previously 

unobserved unequipped vehicle via gaps in a stopped queue. 

 

2. Estimate the unequipped vehicle’s initial position and speed, and insert it into a 

rolling, real-time simulation of the vehicles on the network. 

 

3. Simulate the movements of the inserted vehicle over time. 

 

4. Determine when the inserted vehicle estimate is no longer correct, and remove it from 

the simulation.  

 

Step 1: Determine from its observed behavior when an EV is reacting to a previously unobserved 

unequipped vehicle via gaps in a stopped queue. 

 

  The first step in estimating the locations of unequipped vehicles is to determine when an 

EV’s behavior indicates the presence of a previously undetected unequipped vehicle.  On an 

arterial, the most obvious example of this unexpected behavior occurs in a stopped queue, shown 

in Figure 2.  If an EV leaves a large gap between itself and the leading vehicle at any time or 

between itself and the stop bar during a red phase, an unequipped vehicle is probably in the gap. 

 

In this step, the algorithm finds all stopped vehicles (both EVs and vehicle estimates 

inserted during previous time steps) within 50 meters (164 feet) of the stop bar on an approach.  

Figure 3 shows how the queue length is calculated.   Stopped vehicles are defined as vehicles 

with a speed of less than 1 meter per second.  If the signal is red, the start of the queue is the 

location of the stop bar.  If the signal is amber or green, the start of the queue is the location of 

the front of the stopped vehicle nearest the stop bar.  The end of the queue is the location of the 

front of the stopped vehicle that is both farthest from and within 50 meters (164 feet) of the stop 

bar.  The vehicles at the start and end of the queue may be in different lanes. 

 

 

 
Figure 2. Existence and Location of Unequipped Vehicle Estimated From Gaps in Stopped Queue of 2 

Vehicles Equipped With Communication Devices.  This often occurs during the red phase. 
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Figure 3. Queue Length As Calculated in Developed Arterial Location Estimation Algorithm for Green and 

Red Phases.  Figure is not drawn to scale. 

    

Once the beginning and end of the queue are determined, the vehicle positions within the 

queue are analyzed to find gaps.  Vehicles in this analysis were assumed to behave in accordance 

with the Wiedemann car-following model, discussed in greater detail later.  According to this 

model and based on the empirical values collected by Wiedemann and Reiter (1992) (and in 

some cases extrapolated from Wiedemann and Reiter’s charts by Olstam and Tapani [2004]), the 

minimum gap between two observed vehicles that will trigger an insertion is 2 × AX = 14.5 

meters (48 feet), where AX represents the average stopped space headway.  After each new 

estimated vehicle is inserted, the queue is again searched for gaps until none is present. 

 

Step 2: Estimate the unequipped vehicle’s initial position and speed, and insert it into a rolling, 

real-time simulation of the vehicles on the network. 

 

 When a gap is found in the queue, an estimated vehicle is inserted into the queue.  The 

vehicle is inserted at the average stopped following distance AX predicted from the Wiedemann 

model (Wiedemann and Reiter, 1992), which is 7.25 meters (24 feet) behind the front of the 

leading observed vehicle.  This assumes that the leading vehicle has a typical passenger vehicle 

length of 4.75 meters (16 feet) and the gap between vehicles is 2.5 meters (8 feet). 

 

In the evaluation of this network, a system with uniform vehicle lengths was used.  All 

inserted vehicles were assigned a length of 4.75 meters (16 feet).  Because all inserted vehicles 

were in stopped queues, the inserted vehicle had a speed of 0 m/s (0 mph) and an acceleration of 

0 m/s
2
 (0 ft/s

2
).  If the vehicle-to-infrastructure communication system is able to transmit 

individual vehicle lengths, the inserted vehicle will be placed with its front bumper 2.5 meters (8 

feet) behind the rear bumper of the lead vehicle. 

 

Step 3: Simulate the movements of the inserted vehicle over time. 

 

 Once the vehicles are inserted into the gaps, their movements and interactions with other 

equipped and inserted vehicles can be simulated.   This allows the arterial location estimation 

algorithm to continue to estimate unequipped vehicle positions even as the inserted vehicle 

leaves the queue and travels through the network.  The microscopic simulation software VISSIM 
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was used to simulate vehicle movements (PTV AG, 2011).  VISSIM was chosen because of its 

COM (Component Object Model) Interface, which allows the user to insert and delete individual 

vehicles without stopping the simulation run.  In addition, VISSIM allows the user to open and 

control multiple simulation instances simultaneously, allowing the behavior of one model to 

influence the inputs to the other.  This was a particularly useful capability in the evaluation of the 

effect of the arterial location estimation algorithm on a connected vehicle application, as a single 

simulation run can represent ground truth and another can represent a rolling estimation of 

vehicle positions. 

 

Step 4: Determine when the inserted vehicle estimate is no longer correct, and remove it from 

the simulation.  

 

 Vehicle estimates that have been inserted into the simulation are checked every time step 

to ensure that their positions have not been overlapped by an EV’s self-reported position.  

Overlap is defined as vehicles making physical contact and uses the assumed vehicle lengths of 

inserted vehicles and reported vehicle lengths of EVs.  Once an inserted vehicle has been 

overlapped, it is no longer considered a correct estimate of an actual unequipped vehicle and is 

therefore removed from the simulation.  Inserted vehicles that reach the end of the network are 

also deleted from the simulation. 

 

Freeway Location Estimation 

 

There are several differences between the developed arterial and freeway location 

estimation algorithms.  On arterials, the presence of unequipped vehicles can be estimated based 

on gaps in a queue of EVs.  On freeways, vehicles may often accelerate and decelerate, but 

complete stops are infrequent outside the most congested urban areas or during incidents.  

However, freeways are unique in that they represent a controlled access, vehicle-only 

environment.  Freeway drivers react mostly to other vehicles in the roadway, with occasional 

exceptions such as weather, glare, incidents, etc.  Therefore, any unusual longitudinal behavior 

exhibited by a vehicle is likely a response to the vehicle or vehicles directly ahead rather than to 

traffic control devices.   

 

In the developed arterial location estimation algorithm, an unequipped vehicle was 

assumed to be present in the gaps of a queue.  At a simpler level, the presence was assumed not 

because of the gap but because the equipped following vehicle did not accelerate into the gap as 

expected.  The differences in an EV’s actual and expected behavior may indicate the presence of 

an unequipped vehicle.  On freeways, the longitudinal acceleration behavior of vehicles can be 

used to estimate vehicle locations directly if one assumes that an EV must be reacting to another 

vehicle. 

 

To develop a microscopic estimation of freeway vehicle locations and speeds, the 

freeway location estimation algorithm determines when an EV is behaving differently than 

would be expected based on the locations and speeds of vehicles directly ahead.  To identify this 

unexpected behavior, a definition of expected behavior is needed.  A car-following model, which 

predicts the behavior of vehicles in response to a vehicle or vehicles ahead, can serve as a 
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baseline for expected behavior.  For this study, the Wiedemann model was selected, as discussed 

here.  

 

Overview of Wiedemann Model 

 

  The Wiedemann model, as cited by Olstam and Tapani (2004), is a psychophysical car-

following model that estimates the thresholds for a driver’s decision to accelerate or decelerate 

based on the driver’s perceptions of changes in relative velocity.  The model uses four regimes: 

free driving, following, closing, and emergency; each regime corresponds to a vehicle’s position 

and speed relative to the vehicle directly ahead.  

  

The Wiedemann model was selected for two reasons:   

 

1. It is space- and time-discrete and is therefore compatible with the freeway location 

estimation algorithm as implemented.  

 

2. It has gained acceptance as the basis for VISSIM (PTV AG, 2011), which is widely 

used.  

 

The Wiedemann model has several parameters to determine a vehicle’s regime and the 

corresponding rate of acceleration.  To avoid overfitting the model to the evaluation dataset, the 

Wiedemann model as applied here used the calibration parameters derived from empirical 

freeway data collected by Wiedemann and Reiter (1992).  Some model parameters were found in 

the original paper (Wiedemann and Reiter, 1992), and others were extrapolated from Wiedemann 

and Reiter’s charts by Olstam and Tapani (2004).  Specific values are provided in Table 2. 

 

In the freeway location estimation algorithm, the Wiedemann model is limited to in-lane 

car-following; lane changing decisions are not modeled, as these models introduce additional, 

and potentially unnecessary, complexity into the algorithm.  Theoretically, an unequipped 

vehicle that changes lanes will be represented by two separate inserted vehicles, created and 

deleted in separate lanes and at different times.   

 

Once the model parameters have been determined for each vehicle at each time step, the 

vehicle must then be categorized into one of the four regimes, which will then determine its new 

rate of acceleration.  Figure 4 demonstrates the decision process to select the correct regime 

given the vehicle’s parameters.  

 

In the free regime, the vehicle accelerates at the rate needed to reach its desired speed, 

bounded by the maximum acceleration rate.  The acceleration rate is defined in Equation 1.  

 

  [Eq. 1] 

 

For the emergency regime, the vehicle attempts to slow as quickly as possible to avoid a 

collision.  The acceleration rate for the emergency regime is defined in Equation 2.  

 

{ }nn vvaa −desmax ,min=
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  [Eq. 2] 

 

In the closing regime, defined in Equation 3, the vehicle decelerates at a rate designed to 

begin following the lead vehicle.  

 

  [Eq. 3] 

 

 In the following regime, defined by Equation 4, the vehicle maintains its speed with an 

acceleration of zero.  

  [Eq. 4] 

 
Table 2. Wiedemann Model Simulation Parameters and Assumed Vehicle Characteristics  

Parameter Description Value Used Unit 

τ Acceleration difference threshold 1.96 m/s
2 

∆x Headway 
nn xx −−1  m 

∆v Relative velocity 
1−− nn vv  m/s 

ln, ln-1 Length of vehicle 4.75 m 

an-1 Initial acceleration of inserted 

vehicle 

0.0 m/s 

V Min speed of vehicle and leader { }1,min −nn vv  m/s 

AX Min headway 7.25=2.5+nl  m 

BX Calibration factor v2.5  
- 

ABX Desired min headway at low v∆  vBXAX 2.57.25= ++  
m 

CX Calibration factor 40 - 

EX Calibration factor 1.5 - 

amax Max acceleration 

v
40

3.5
3.5 −  

m/s
2
 

amin Min acceleration 

v
60

1.5
20 +−  

m/s
2
 

SDX Maximum following distance vBXEXAX 3.757.25= +×+  
m 

SDV Decreasing speed difference 22

40

7.25
= 







 −∆







 −∆ x

CX

AXx
 

m/s 

OPDV Increasing speed difference SDV2.25−  m/s 

CLDV Small decreasing speed difference Equal to SDV, as in VISSIM m/s
2
 

λ Leading vehicle speed adjustment 

factor 

0.162 - 

Stochastic values in the original model (Wiedemann and Reiter, 1992) were removed for simplicity.  All parameters 

were developed from Wiedemann and Reiter (1992) as interpreted by Olstam and Tapani (2004), with the exception 

of λ and τ, which were developed as part of this study. 

   

BX

xABX
aa

xAX

v
a nn

∆−
++

∆−

∆
⋅ − min1

2

2

1
=









+
∆−

∆
⋅ − min1

2

,
2

1
max= aa

xABX

v
a nn

0=na
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Figure 4. Decision Flowchart to Select Vehicle’s Regime in Wiedemann Car-Following Model (Wiedemann 

and Reiter, 1992).  Individual terms are defined in Table 2. 

 

Freeway Location Estimation Algorithm Procedure 

 

 The procedure to predict the location of vehicles is a five-step process. 

  

1. Each second, the locations, speeds, and accelerations of all EVs at a given time t are 

placed in a virtual roadway (i.e., the simulation), which is already populated with 

inserted vehicle estimates from previous time steps. 

  

2. Any inserted vehicles that have been overlapped by the new EVs are removed from 

the simulation.  

 

3. For each remaining vehicle in the simulation, both EVs and inserted estimates, its 

expected position is updated to time t + 1 based on the Wiedemann model.  Each 

vehicle reacts to the nearest vehicle ahead in the same lane at time t, regardless of 

whether the vehicle is an EV or an inserted vehicle.  

 

4. The rate of acceleration for each EV as defined by the Wiedemann model is 

compared to the EV’s actual self-reported rate of acceleration from Step 1.  If the 

actual acceleration is less than the predicted acceleration by a predefined threshold τ, 

it is assumed that the EV is reacting to a previously undetected unequipped vehicle.  
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5. The new vehicle is then inserted into the simulation at the estimated location and 

speed, assuming it does not already overlap with another inserted vehicle or EV.  The 

inserted vehicle will continue to move forward according to Step 3 until it is 

overlapped or leaves the network.  

 

 Step 5, the insertion of new vehicles at the estimated location and speed, requires further 

explanation.  As discussed, if an EV is found to have an acceleration that is less than expected by 

a predetermined threshold τ (called the acceleration difference threshold, as discussed later), it is 

assumed that the EV is reacting to a previously undetected unequipped vehicle.  This EV that 

triggered the insertion is assumed to behave according to the Wiedemann model and is reacting 

to another vehicle.  Therefore, it is assumed that the vehicle is in either the closing or following 

regime, as the free regime does not react to vehicles and the emergency regime rarely occurs.  If 

the triggering EV is traveling faster than the estimated unequipped vehicle, it is assigned the 

closing regime, and if it is traveling slower than the lead vehicle, it is assigned the following 

regime. 

 

Speed Estimation 

 

 The speed of the unequipped vehicle cannot be directly observed and must be estimated. A 

relationship among lead vehicle speed, following vehicle speed, and following vehicle 

acceleration is defined in Equation 5.  

 

 { },0max=1 nnn avv λ+−  [Eq. 5] 

 

where 

 

vn-1 = speed of the unequipped lead vehicle (m/s) 

vn = speed of the equipped following vehicle (m/s) 

an = acceleration of the equipped following vehicle (m/s
2
) 

λ = calibration factor. 

 

Using linear regression on the NGSIM dataset (FHWA, 2010) of empirical vehicle 

trajectories, λ = 0.162 when using m/s and m/s
2
 for speed and acceleration, respectively, with 

R
2
= 0.831.  When using U.S. customary units of mph and ft/s

2
 for acceleration, λ = 0.795.  This 

value was used in all evaluations, regardless of network. 

 

Acceleration Estimation 

 

 If vn-1 < vn, the closing regime is used to determine the unequipped vehicle’s position. 

The formula for acceleration of vehicle n is defined in Equation 6.  

 

 
( )

1

2

2

1
= −+

∆−

∆
⋅ nn a

xABX

v
a  [Eq. 6] 
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where 

 

ABX  = desired minimum space headway at low speed differences (m) 

 

∆v = difference in speed between vehicle n (the equipped following vehicle) and vehicle 

n-1 (the lead vehicle) (m/s) 

 

∆x = space headway between vehicle n and vehicle n-1 (m) 

 

an-1 = acceleration of lead vehicle n-1. 

 

Because the actual acceleration an of vehicle n is known, Equation 5 can be rearranged to 

determine the space headway, thereby predicting the location of the leading vehicle n-1.  The 

lead vehicle’s speed was estimated from Equation 5, and ∆v can be determined from Equation 7.  

 

 

 { }nnnn vavvv ,min== 1 λ−−∆ −  [Eq. 7] 

 

Uniform Vehicle Length Assumption 

 

 The leading vehicle is assumed to have an acceleration of zero and a standard vehicle 

length of 4.75 meters (16 feet).  The vehicle length assumption is somewhat restrictive, as it may 

overestimate the number of unequipped vehicles when truck percentages are high.  This 

assumption was made for several reasons.  First, because the test networks have very low truck 

percentages, the uniform vehicle length assumption simplifies the model.  Second, although the 

Society of Automotive Engineers  (SAE) dedicated short-range communications (DSRC) 

standard (Standard J2735) to be used in a connected vehicle environment includes vehicle size in 

its Basic Safety Message (i.e., BSM) (SAE, 2009), vehicle size information may not be included 

in other wireless communication standards.  Finally, mistaking a truck for two smaller vehicles 

may have minimal impact on the performance of the model.  The Highway Capacity Manual 

uses a passenger car equivalent ET to represent trucks and buses when calculating freeway 

capacity.  Each truck or bus is represented by 1.5 passenger vehicles on flat terrain, 2.5 vehicles 

on rolling terrain, and 4.5 vehicles on mountainous terrain (Transportation Research Board, 

2010).  Using a 20-meter (66-foot) tractor trailer as an example (FHWA, 2004) and using the 

equation for desired headway ABX from Table 2, two vehicles of 4.75 meters (16 feet) will take 

the place of a single truck when speeds are less than or equal to 4.55 m/s (10.2 mph), as 

demonstrated in Equation 8.  

 

 204.753.757.25 ≤++ v  [Eq. 8] 

 

 

When speeds are greater than 4.55 m/s (10.2 mph), only one vehicle will represent each 

truck. Therefore, each truck will be represented by between 1 and 2 vehicles, similar to the 

passenger car equivalent factor for flat terrain in the Highway Capacity Manual. 
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Position Estimation 

 

 Equation 9 demonstrates the rearrangement of Wiedemann and Reiter’s (1992) closing 

acceleration equation using the new assumptions for leading vehicle acceleration an-1 and length 

ln-1.  

 

 
{ }( )

n

nn

a

va
ABXx

2
,min

2

1
=

λ−
⋅−∆  [Eq. 9] 

 

Equations 6 through 9 assume that because vn-1 < vn, vehicle n must be in the closing 

regime.  Alternatively, if the lead vehicle’s speed is estimated to be greater than or equal to the 

following vehicle’s speed, i.e., vn-1 > vn or an ≥ 0, the following vehicle is assumed to be in the 

following regime.  The space headway is simply the desired minimum space headway ABX as 

defined in Equation 10.  

 

 ABXx =∆  [Eq. 10] 

 

By assuming the unequipped vehicle’s speed using Equation 5 and assuming its 

acceleration of zero, the headway of the two vehicles is calculated and the lead vehicle is 

inserted at the appropriate location and speed.  The new vehicle’s location can be found using 

Equation 11.  

 

 xxx nn ∆+− =1  [Eq. 11] 

 

Rolling Estimation 

 

 The inserted vehicle exists in the rolling estimation of the traffic network and continues 

to move forward and interact with other equipped and unequipped vehicles according to the 

Wiedemann car-following model without changing lanes.  The inserted vehicle is removed from 

the simulation when an EV no longer reacts to it, the inserted vehicle overlaps positions, or the 

inserted vehicle leaves the network. 

 

Acceleration Difference Threshold 

 

 The acceleration difference threshold τ that initiates a vehicle insertion is a critical value 

in the analysis, and for all testing τ = 0.2 g (1.96 m/s
2
, 6.43 ft/s

2
).  This value was chosen based 

on the threshold of 0.5 g for determining a potential incident in naturalistic driving studies 

(Dingus et al., 2006).  In addition, the car-following model used here has a maximum 

acceleration of 0.36 g (3.5 m/s
2
, 11.5 ft/s

2
) when a vehicle is stopped, with this maximum rate of 

acceleration inversely related to the vehicle’s speed.  Therefore, any vehicle traveling less than 

17.6 m/s (39 mph) with no acceleration but with a predicted maximum acceleration (amax) will 

cause the algorithm to insert an unequipped vehicle.  This value is calculated from the equation 

for maximum acceleration in Table 2, where 1.96 = 3.5 - (3.5/40)(17.6).   In this way, the 

algorithm is effective at low-speed synchronized traffic flow, even when vehicles are not 

decelerating. 
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Vehicle Data Quality 

 

 Finally, the algorithm assumes that EVs report their lane; location; speed (which if not 

reported directly can be determined from the difference in location since the last transmission); 

and instantaneous acceleration.  In a dedicated short-range communications (DSRC) radio-

enabled environment, this information would be included in the Basic Safety Message (BSM), 

transmitted by each vehicle 10 times per second for crash avoidance applications as described in 

SAE J2735 (SAE, 2009).  The freeway location estimation algorithm requires that vehicles 

report only once per second, as this allows for the periodic message drops expected in the BSM’s 

10 Hz transmission rate.  The algorithm assumes EVs will be able to report their own lane-level 

locations, as determined via GPS, a global navigation satellite system, or some other means.  

Although GPS alone cannot reliably determine location at this level of precision, when 

supplemented by Russia’s GLONASS and forthcoming satellite systems from Europe (Galileo) 

and China, it is expected to achieve an accuracy of 1.5 meters (5 feet) 95% of the time, even in 

urban canyons, by 2020 (Popovic and Bai, 2011).  This level of accuracy should be adequate for 

the lane-level positioning needed for the freeway location estimation algorithm. 

 

Privacy 

 

 It is worth noting the algorithm was designed to protect driver privacy as much as 

possible.  Although polled often, vehicles are never re-identified in the corridor, and the 

algorithm by design does not need to store vehicle trajectories for longer than 1 second.  In a 

field implementation, the system can be designed to delete immediately or specifically not 

request individual vehicle IDs and can also be designed with minimal internal memory to ensure 

that EV locations are not stored any longer than necessary. 

 

 Brief Demonstration of Algorithm 

 

Figure 5 provides an example using two vehicles to demonstrate the algorithm.  The lead 

vehicle travels at 20 m/s (45 mph) and the following vehicle at 15 m/s (34 mph), with a headway 

of 100 m (328 feet).  Using the equation for maximum following distance SDX  in Table 2, the 

vehicle’s SDX  can be calculated, as demonstrated in Equations 12 and 13.  

 

 { } { } m/s15=15,20min=,min= 1−nn vvv  [Eq. 12] 

  

 m21.77=153.757.25=3.757.25= ++ vSDX  [Eq. 13] 

 

Because the actual headway of 100 meters (328 feet) is greater than SDX (∆x > SDX) and 

because the speed differential is negative (∆v = vn - vn-1 < 0), according to Table 2 the following 

vehicle is in the free regime.  In a software program, the decision process in Figure 4 would be 

used to determine a vehicle’s regime.  Using the equation for expected acceleration of a vehicle 

in the free regime, Equation 1, the acceleration is calculated as shown in Equation 14.  

 

  [Eq. 14] 2m/s2.18=15
40

3.5
3.5= −na
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Figure 5. Example of Freeway Location Estimation Algorithm Showing Two Equipped Vehicles Before 

Estimation of Location and Speed of an Unequipped Vehicle 

 

The actual acceleration of -1 m/s
2
 (-3.3 ft/s

2
) is less than the expected acceleration of  

2.18 m/s
2
 (7.2 ft/s

2
) by 3.18 m/s

2 
(10.4 ft/s

2
), which exceeds the acceleration difference threshold 

τ of 2 g = 1.96 m/s
2
 (6.4 ft/s

2
).  Therefore, a vehicle insertion is triggered.  Because the following 

vehicle was decelerating, it is assumed it was in the closing regime and would be expected to 

behave according to Equation 6.  The new inserted vehicle’s speed is estimated based on the 

empirical relationship demonstrated in Equation 5, where λ = 0.162 (0.795 when using U.S. 

customary units).  The inserted vehicle’s speed is then estimated as shown in Equations 15 

through 17.  

 

 { },0max=1 nnn avv λ+−  [Eq. 15] 

  

 { }1),00.162(15max=1 −+−nv  [Eq. 16] 

  

 m/s14.84=1−nv  [Eq. 17] 

 

The inserted vehicle’s position is determined using Equation 9 and is calculated as shown 

in Equations 18 through 20.  

 

 
{ }( )

n

nn

a

va
ABXx

2
,min

2

1
=

λ−
⋅−∆  [Eq. 18] 

  

 
{ }( )

1

1),150.162(min

2

1
152.57.25=

2

−

−−
⋅−+∆x  [Eq. 19] 

  

 m18.24=x∆  [Eq. 20] 

 

  The new vehicle is inserted into the algorithm at the estimated speed, location, and 

acceleration as shown in Figure 6 and continues to drive according to the Wiedemann model 

until an EV overlaps it or it leaves the network, at which point it is deleted.  A vehicle inserted at 

time t must survive the analysis at time t+1 before it is considered in the results.  
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Figure 6. Example of Freeway Location Estimation Algorithm After Estimate of a Vehicle’s Location 

and Speed Were Inserted Into Network 

  

 

Task 3: Development of Testing Parameters for Developed Algorithms 

 

The location estimation algorithms were tested in simulation and against empirical 

vehicle trajectory datasets.  Several performance metrics were tested, including the following: 

 

• Freeways 

 

 effective penetration rate 

 

 density visualizations 

 

 inserted vehicle lifespan 

 

 improvements in stops, delay, speed, and distance traveled when the algorithm is 

applied to a connected vehicle ramp metering algorithm at various EV penetration 

rates. 

 

• Arterials 

 

 effective penetration rate 

 

 mean absolute error (MAE) of estimated versus actual queue length 

 

 MAE of estimated versus actual number of queued vehicles 

 

 improvements in stops, delay, speed, and stopped delay when the algorithm is 

applied to a connected vehicle traffic signal control algorithm at various EV 

penetration rates. 

 

Only one of these metrics, the effective penetration rate, is unique to this study.  It is 

described in the following sections.  The other metrics are described as they are introduced in the 

Task 4 results section. 

 



19 

 

Effective Penetration Rate 

 

The arterial analysis focused on queue length, which is an important metric for signal 

timing applications.  However, queue length measures only stopped vehicles.  Equally important 

are the moving vehicles approaching the intersection, particularly groups of vehicles moving 

together along a signalized corridor, called platoons.  A new metric is needed to measure the 

ability of the arterial location estimation algorithm to estimate the locations of both moving and 

queued vehicles. 

 

General Example 

 

Measuring the performance of the location estimation algorithms is challenging.  

Normally the difference between observed and estimated values can be measured and averaged, 

which requires a one-to-one relationship between estimates and observations.  The location 

estimation algorithms, by contrast, often have a different number of estimates (inserted vehicles) 

and observations (unequipped vehicles).  A new metric was developed to provide some 

understanding of the performance of the algorithms and is referred to as the effective penetration 

rate, PReff.  The effective penetration rate metric is essentially the number of EVs, plus the 

number of “correct” inserted vehicles, minus the number of “incorrect” inserted vehicles, divided 

by the total number of equipped and unequipped vehicles, as shown in Equation 21.  

 

 PReff = No.	Equipped	Vehicles	�	No.	Correct	Insertions	-	No.	Incorrect	InsertionsNo.	Equipped	Vehicles	�	No.	Unequipped	Vehicles  [Eq. 21] 

 

For example, an application of 70 EVs and 30 unequipped vehicles can be considered. 

The penetration rate is 70/(30 + 70) = 70%.  There are also 15 inserted vehicles.  Ten of the 

inserted vehicles are within the same lane and within range of unique unequipped vehicle and are 

considered correct estimates.  Five are not within range of unique unequipped vehicles and are 

considered incorrect estimates.  The effective penetration rate would be calculated as 

(70 + 10 - 5)/(70 + 30) = 75%.  Thus, the effective penetration rate has a maximum value of 

100%. 

 

Specific Formulation 

 

The previous calculation is a high-level example for a single lane at a single second.  To 

calculate the effective penetration rate for the entire network over a period of time, the following 

procedure should be used. 

 

1. Sort the individual estimates and observations within the same lane and time into 

exclusive pairs based on the nearest neighbor.  Only one observation for any time and 

lane may be matched with a single estimation at the same time and lane and vice 

versa.   

 

2. Record the one-dimensional distance between these two values as the minimum 

absolute distance between any single estimated location and observed location.   
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This procedure is defined in the iterative process, performed from n = 1 to #Ot,l , as described in 

Equations 22 through 26.  	
                             ��, !"# = $min &'(�, × *�, +, − '(�, × *�, +./ 	if	" ≤ #(�, 																																∞																														if	" > #(�, 

4 [Eq. 22] 

  

 5 = 6(�, ∉ (�, !8#9 [Eq. 23] 

  

 (�, = 5 [Eq. 24] 

  

 : = 6*�, ∉ *�, !;#9 [Eq. 25] 

  

 *�, = : [Eq. 26] 

 

where 

 

O = set of all observations 

X = set of errors for each vehicle location estimation in the set E 

E = set of all vehicle location estimates 

l = individual lanes in the set of all lanes L 

L = set of all lanes 

t = individual time intervals in the set of all time intervals T 

T = set of all time intervals 

# = symbol specifying the number of elements in the identified set 

i = observation with the lowest error for iteration n 

j = estimation with the lowest error for iteration n  

A, B = placeholders. 

 

In each iteration n, the variables i and j represent the minimum respective observation 

and estimation with the closest relative error of the set, as shown in Equation 22.  These 

individual records are removed from the set in Equations 23 through 26, using sets A and B as 

placeholders. 

 

To calculate the effective penetration rate, each location estimation error in X that is less 

than or equal to the distance ρ is classified as a correct measurement and each greater than ρ is 

classified as an incorrect measurement.  The metric essentially defines all EVs as correct 

measurements and ensures that any single incorrect measurement cancels out a single correct 

measurement.  The effective penetration rate for a given accuracy distance ρ is defined in 

Equation 27. 	
                                                        PReff,< = #= � >#?@∈B:@D<EF#G

#H                      [Eq. 27] 

Testing Environment 

  

The arterial location estimation algorithm was tested on a calibrated model of U.S. 50, a 

four-signal arterial network in Chantilly, Virginia, shown in Figure 7. 
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Figure 7. The Arterial Test Network, a 4-Signal Section of U.S. 50 in Chantilly, Virginia 

 

Vehicle volumes and turning movements were collected in 2003 between 3 P.M. and 

4 P.M. on weekdays (Park and Schneeberger, 2003).  Pedestrian movements, which were very 

low at these intersections, were ignored in this analysis.  The arterial location estimation 

algorithm was replicated 5 times in each testing scenario.  VISSIM was used to simulate vehicle 

movements (PTV AG, 2011).  The arterial location estimation algorithm was tested at EV 

penetration rates of 5%, 10%, 15%, 25%, 50%, and 100%.  The use of VISSIM is somewhat of a 

best case scenario, as VISSIM's car-following model is based on the Wiedemann model used in 

the arterial location estimation algorithm.  

 

The arterial location estimation algorithm requires that inserted vehicles decide which 

way to turn at downstream intersections.  The following two methods are used to predict turning 

decisions: 

  

1. Default (dflt).  Vehicles are assigned a default 10% probability of turning left, a 10% 

probability of turning right, and an 80% probability of traveling straight through an 

intersection.  This method was developed to avoid storing records of vehicle 

movements in a field deployment, either individually or aggregated.  Turning 

movements are considered aggregated vehicle movements. 

 

2. Measured (msrd).  Vehicles are assigned a probability of turning based on actual 

turning percentages measured in the field.  This requires the recording of aggregated 

vehicle movements during a field deployment, which may impact privacy. 

 

The same network was used to test the connected vehicle traffic signal control 

application, described in the Task 4 results section. 

 

As discussed previously, the freeway location estimation algorithm was tested using 

vehicle trajectory data from the NGSIM project, a field-collected dataset of vehicle movements 
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along several corridors in the United States (FHWA, 2010).  Vehicle movements were collected 

from video recordings and then extracted via specialized software.  A dataset collected from a 

500-meter (1,640-foot) section of I-80 in Emeryville, California, between 5:00 P.M. and  

5:30 P.M. on April 13, 2005, was used to evaluate the freeway location estimation algorithm.  

The roadway has five lanes in the northbound direction, along with an on-ramp, off-ramp, and 

weave area.  Only the behavior of vehicles traveling in the through lanes was analyzed; the 

activity on the ramps and merge lanes was not.  Figure 8 shows an overview of the network.  

Because the NGSIM data list the position of every vehicle 10 times per second, they are 

considered ground truth data.  A portion of vehicles in the dataset were randomly assigned as 

unequipped vehicles, and their trajectories were removed from the evaluation dataset. 

 

A model of a theoretical ramp metering algorithm was developed to test the connected 

vehicle ramp metering application.  More detailed descriptions of this network and the ramp 

metering application are provided in the Task 4 results section. 

 

 
Figure 8. Section of I-80 Used in Next Generation Simulation (NGSIM) Data and Area Evaluated in Study 

 

 

Task 4: Testing and Evaluation of the Developed Algorithms  

 

Arterial Location Estimation Algorithm 

 

General Performance 

 

 Summary statistics of the evaluation of the arterial location estimation algorithm for 

default and measured turning movements are provided in Table 3.  The table uses the following 

metrics: 

   

• Number of insertions: the number of unique instances of inserted vehicles, regardless 

of how long an inserted vehicle survives.  This is roughly equivalent to the number of 

times an EV triggers an insertion.  

 

• Number of equipped vehicles: the number of vehicles with communications 

capabilities.  This is approximately the total number of vehicles in the scenario 

multiplied by the penetration rate.  
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Table 3. Summary Statistics of the Evaluation of the Arterial Location Estimation Algorithm 

Penetration Rate (%)  5 10 15 25 50 100 

Default Turning Movements 

Number of insertions  1,116 1,482 1,963 2,119 2,164 1,568 

Number of equipped vehicles  225 449 673 ,1126 2,260 4,515 

Average inserted vehicle lifespan (s) 74.4 78.9 76.8 72.6 66.4 17.7 

Insertions per real vehicle 0.248 0.330 0.438 0.470 0.479 0.347 

Insertions per equipped vehicle 4.96 3.30 2.92 1.89 0.96 0.35 

Equipped vehicle-seconds per insertion 33.6 47.3 52.5 78.8 155.8 462.3 

Measured Turning Movements 

Number of insertions  1,078 1,393 1,946 2,145 2,190 1,630 

Number of equipped vehicles  225 447 670 1,122 2,241 4,504 

Average inserted vehicle lifespan (s)  74.0 72.0 79.0 72.8 63.2 17.1 

Insertions per real vehicle 0.239 0.312 0.436 0.478 0.489 0.362 

Insertions per equipped vehicle 4.78 3.12 2.90 1.91 0.98 0.36 

Equipped vehicle-seconds per insertion 34.4 46.0 50.3 76.0 154.9 438.1 

   

• Average inserted vehicle lifespan (s): the average time in seconds that an inserted 

vehicle survives and moves forward before it is either overlapped by an EV and 

deleted or reaches the end of the network.  

 

• Insertions per real vehicle: the total number of unique vehicle insertions divided by 

the total number of vehicles, equipped and unequipped, in the scenario.  

 

• Insertions per equipped vehicle: the total number of unique vehicle insertions divided 

by the total number of EVs.  Each EV triggers an average of this number of insertions 

during its drive through the network.  

 

• Equipped vehicle-seconds per insertion: the average number of vehicles inserted by 

an EV as it travels through the network.  

   

As expected, there was very little difference between the default and measured turning 

movements, as the metrics in Table 3 have to do mostly with the number and initial placement of 

inserted vehicles rather than their later turning decisions.  Inserted vehicles typically remain in 

the simulation for 70 to 80 seconds unless the EV penetration rate is 100%, at which point 

inserted vehicles remain for only 17.7 seconds on average. 

 

The 100% penetration rate scenario was included because in a field deployment there 

may be no way to measure the actual penetration rate at any given time.  The arterial location 

estimation algorithm may be inadvertently used even with high penetration rates, and it is useful 

to know if the algorithm produces significant errors with high penetration rates.   Ideally, at high 

penetration rates, the algorithm would not be activated. 

 

Figure 9 shows a sample of vehicle trajectories of equipped, unequipped, and inserted 

vehicles in the network at a 15% EV penetration rate.  Ideally, each inserted vehicle will match 

the trajectory of a unique unequipped vehicle.  Of particular note are the insertion of several 

vehicles in a stopped queue and the arrival of several vehicles inserted downstream of the subject 

intersection. 
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Figure 9. Sample of Vehicle Trajectories of Equipped, Unequipped, and Inserted (Estimated) Vehicles at 15% 

Equipped Vehicle Penetration Rate on Single Lane   

 

Queue Length and Queued Vehicle Count 

 

An important factor in signal timing decisions is the queue length at an intersection in 

terms of both distance and number of queued vehicles.  In this analysis, queues were measured 

during the last second of a red phase immediately before a green phase.  This represents the 

largest queues during any particular cycle.  The measures of effectiveness used for this 

evaluation were the MAEs of queue length and number of queued vehicles.  MAE is defined in 

Equation 28.  

 ||
1

=
1=

ii

n

i

yf
n

MAE −∑  [Eq. 28] 

where 

 

fi = predicted value 

yi = ground truth value. 

 

 The MAEs of the queue lengths and number of queued vehicles immediately before 

green phases are listed in Table 4, and individual measurements are shown graphically  
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in Figure 10.  From the table, the arterial location estimation algorithm produces a very small 

improvement  in queue length across all penetration rates.  The queued vehicle count is 

substantially improved when the penetration rate is below 100% but is worse at 100% 

penetration as the algorithm will insert vehicles to balance queues on multilane approaches.    

 
Table 4. Mean Absolute Error (MAE) of Queue Length and Number of Queued Vehicles Measured for Each 

Approach Immediately Before Next Green Phase for Arterial Location Estimation Algorithm 

 

PR (%) 

MAE Queue Length (m) MAE Queued Vehicle Count 

EV-Only LE-dft LE-msrd EV-Only LE-dft LE-msrd 

5  16.8   16.3   16.4   7.3   6.0   6.0  

10  11.6   11.0   11.6   5.8   4.2   4.3  

15  9.1   8.6   8.8   5.4   3.3   3.4  

25  6.5   6.2   6.0   4.6   2.5   2.4  

50  2.9   3.1   2.9   3.3   1.5   1.3  

100  0.0   0.1   0.1   0.0   0.9   0.9  

Values are averaged across all movements in the network.  PR = equipped vehicle penetration rate;  

EV-only = the measurements from equipped vehicles only; LE-dft = the arterial location estimation 

algorithm in effect but with default turning movements; LE-msrd = the arterial location estimation 

algorithm in effect but with field-measured turning movements. 

 

   
Figure 10. Estimated vs. Actual Queue Lengths and Number of Queued Vehicles at 15% Penetration Rate 

for Arterial Location Estimation Algorithm  
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Effective Penetration Rate 

   

The effective penetration rate PReff, discussed previously, measures the accuracy of the 

location estimation algorithms.  It represents the percentage of all vehicles with “known” 

locations, including both EVs and unequipped vehicles with a one-to-one relationship with an 

inserted vehicle within the specified accuracy distance.  The effective penetration rate across the 

entire evaluation network averaged over five runs is shown in Table 5.    

 

In Table 5, values in bold indicate when the effective penetration rate PReff is higher than 

the actual penetration rate, i.e., when there are more correct than incorrect estimates.  For most 

penetration rates tested, the algorithm produced more accurate than inaccurate estimates at ρ > 7 

meters (23 feet).  At a 100% penetration rate, every estimate is automatically incorrect and the 

effective penetration rate is 96.2% regardless of ρ.  Although the algorithm should never be used 

at the 100% penetration rate as it produces only noise, in implementation, the actual percentage 

of EVs may not be known.  In some circumstances, penetration rates may approach 100% while 

the location algorithm is still running, and therefore it is useful to investigate the error produced 

by the location estimation algorithm in these circumstances. 

 

Because vehicles are inserted in stopped queues, the effective penetration rate is expected 

to be higher in the vicinity of a traffic signal.  Figure 11 shows the effective penetration rates for 

several actual penetration rates along the test corridor for eastbound traffic.  The vertical dotted 

lines in Figure 11 represent the stop bar immediately prior to the traffic signal.  The minimum 

estimate accuracy ρ is 10 meters (31 feet) in this example.  

 
Table 5. Effective Penetration Rate Over Entire Test Network Averaged Over 5 Simulation Runs for Arterial 

Location Estimation Algorithm 
Accuracy 

Distance 

ρ (m) 

 

Penetration Rate (%) 

5 10 15 25 50 100 

1  -3.3   -2.5   -0.9   9.8   36.9   96.2  

2  -0.6   1.4   4.1   14.3   40.8   96.2  

3  1.3   4.2   7.6   17.6   43.4   96.2  

4  2.7   6.2   10.1   20.0   45.3   96.2  

5  3.8   8.0   12.4   22.1   46.9   96.2  

6  4.9   9.6   14.4   24.0   48.4   96.2  

7  5.8  11.0   16.2  25.6   49.7   96.2  

8  6.6  12.2   17.8  27.1  50.8   96.2  

9  7.3  13.3   19.2  28.4  51.9   96.2  

10  7.9  14.3   20.4  29.5  52.7   96.2  

11  8.4  15.1   21.4  30.4  53.5   96.2  

12  8.8  15.7   22.2  31.3  54.2   96.2  

13  9.3  16.4   23.0  32.0  54.8   96.2  

14  9.6  16.9   23.6  32.7  55.4   96.2  

15  9.9  17.5   24.3  33.3  55.8   96.2  

Values in bold indicate when the effective penetration rate PReff is higher than the actual penetration rate, i.e., 

when there are more correct than incorrect estimates.  At a required accuracy distance ρ of 7 meters (23 feet), 

the algorithm is able to improve its original penetration rate. 

 



 

Figure 11. Effective Penetration Rates 
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The PMSA is a traffic signal control algorithm that observes individual vehicle locations 

and predicts their behavior over a 15-second horizon using a commercial traffic simulation 

software package.  The movements over the horizon are repeated for several possible signal 

phase configurations, and the scenario with the optimized objective function (in this case, 

minimized delay) is selected as the next phase.  This process is repeated continuously.  Previous 

testing of the PMSA in simulation has shown that higher EV penetration rates improve the 

PMSA’s performance and that the PMSA begins to outperform a coordinated-actuated control 

system at between a 10% and 25% penetration rate.   

 

Evaluation Design  

 

The specific techniques used to operate the model were complex and merit further 

discussion.  The evaluation of the PMSA using arterial location estimation had three parts:   

 

1. ground truth simulation, representing the “real world” 

 

2. rolling estimates of unequipped vehicle locations (i.e., the arterial location estimation 

component) 

 

3. traffic signal control rolling horizon prediction space where different signal phasings 

are tested (i.e., the PMSA component).  

 

Each component of the simulation must be operated in a separate simulation instance, 

with each of the three simulations pausing and restarting while waiting for the calculations from 

the other simulations.  VISSIM was used to control all three simulation components, as 

VISSIM’s Application Programming Interface (API) and COM (Component Object Model) 

Interface allow users to open, close, run, and pause up to four separate instances of VISSIM 

simultaneously (PTV AG, 2011). 

 

Figure 12 describes the flow of information among the three simulation instances.  In the 

evaluation, the first simulation window simulates vehicles in the real world.  Each second of the 

simulation, the second simulation instance (i.e., window) will poll the EVs in the first simulation 

and insert copies of these vehicles into the second simulation.  The arterial location estimation 

algorithm runs in this second simulation, determining gaps in the queue and inserting and 

deleting unequipped vehicle estimates as needed.  When the PMSA determines that a signal 

should reevaluate its phasing, the third simulation will poll all vehicles in the location estimation 

simulation and then populate the PMSA simulation with copies. 

 

The PMSA was evaluated in simulation on a model of a four-signal arterial using the 

field-collected volumes and turning movements (Park and Schneeberger, 2003).  Under the 

tested volumes, the network has an average intersection capacity utilization of 0.75, which is a 

metric used by the traffic signal timing software Synchro as a surrogate for volume-capacity ratio 

(Husch and Albeck, 2003).  EV penetration rates of 5%, 10%, 15%, 25%, 50%, and 100% were 

tested 5 times each for 30 minutes with 400 seconds of warm up.  In addition, both inserted 

vehicle turning strategies were tested: (1) the default turning movements where inserted vehicles 

at all intersections have a 10% probability of turning left and a 10% probability of turning right,  
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Figure 12. Flow of Information Among the Three Components (Real World or Ground Truth, Arterial 

Location Estimation, and PMSA) of Traffic Signal Control Application Using Location Estimation 

 

and (2) the field-measured turning movements where a vehicle’s probability of turning is 

equivalent to measured turning probabilities specific to the approach. 
 

  Table 6 shows the performance of the arterial location estimation algorithm (using the 

default and measured turning movements) when compared to the PMSA using EVs only.   

P-values represent the results of a two-tailed t-test assuming unequal variances.  The same data 

are shown graphically in Figure 13.  

 

Performance Compared to Equipped Vehicle–Only Scenario 

 

Both location estimation algorithms are able to improve the performance of the PMSA 

significantly during certain situations.  Improvements were found in delay, speed, and stopped 

delay when the penetration rate was 25% or less.  Improvements in stops at these penetration 

rates were very small or nonexistent.  The improvements in delay, speed, and stopped delay were 

significant (P < 0.05) only for the two-tailed two-sample t-test assuming unequal variances) at 

10% and 25% penetration rates.  P-values were less than 0.3% at a 15% penetration rate. 

 

The arterial location estimation algorithm substantially worsened the performance of the 

PMSA at higher penetration rates of 50% and 100%, with up to 14% increases in stops at a 100% 

penetration rate.  This may be due to the poor performance of the PMSA at high volumes where 

low-volume side streets are rarely assigned green unless they reach 120 seconds of red time  
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Table 6. Performance of PMSA With and Without the Arterial Location Estimation Algorithm 
 PR  

(%)  

 Technique  

  

 Delay  

 (s) 

 EV Diff  

  

 P-

value  

  

 LE-dft  

Diff  

 P-

value  

  

    PR  

 (%) 

Technique  

  

 Speed  

 (mi/hr) 

 EV Diff  

  

 P-

value  

  

 LE-dft  

Diff  

 P-

value  

  
  

5  EV-only   62.6             5  

  

  

 EV-only   26.6          

 LE-dft   61.7   -1.37%  0.713         LE-dft   26.8   0.82%  0.588      

 LE-msrd   61.5   -1.76%  0.327   -0.40%   0.918     LE-msrd   26.8   0.99%  0.252   0.16%  0.918  

10  EV-only   54.1             10  

  

  

 EV-only   28.0          

 LE-dft   52.7   -2.64%  0.164         LE-dft   28.3   1.19%  0.116      

 LE-msrd   51.6   -4.71%  0.040   -2.13%   0.343     LE-msrd   28.5   1.88%  0.037   0.68%  0.424  

15  EV-only   50.0             15  

  

  

 EV-only   28.8          

 LE-dft   49.1   -1.78%  0.310         LE-dft   29.0   0.90%  0.121      

 LE-msrd   48.3   -3.38%  0.280   -1.63%  0.598     LE-msrd   29.2   1.40%  0.162   0.50%  0.587  

25  EV-only   47.1             25  

  

  

 EV-only   29.3          

 LE-dft   45.2   -4.04%  0.015         LE-dft   29.8   1.57%  0.031      

 LE-msrd   45.0   -4.41%  0.025   -0.38%  0.835     LE-msrd   29.8   1.65%  0.003   0.08%  0.898  

50  EV-only   45.2             50  

  

  

 EV-only   29.7          

 LE-dft   46.4   2.66%  0.057         LE-dft   29.5   -0.62%  0.130      

 LE-msrd   46.6   3.12%  0.015  0.45%  0.633     LE-msrd   29.5   -0.63%  0.109   -0.01%  0.987  

100  EV-only   48.3             100  

  

  

 EV-only   29.1          

 LE-dft   52.8   9.32%  0.000         LE-dft   28.2   -2.81%  0.000      

 LE-msrd   52.9   9.39%  0.013   0.06%  0.981     LE-msrd   28.2   -2.87%  0.007   -0.06%  0.937  

 

PR  

(%) 

 Technique  

  

 Stopped  

 Delay (s) 

 EV Diff  

  

 P-

value  

  

 LE-dft  

Diff  

 P-

value  

  

   PR  

 (%) 

Technique  

  

 Stops  

  

 EV Diff  

  

 P-

value  

  

 LE-dft  

 Diff  

 P-

value  

  
  

5  EV-only   37.1             5  

  

  

 EV-only   6223          

 LE-dft   35.4   -4.56%  0.409         LE-dft   6493   4.33%  0.255      

 LE-msrd   35.5   -4.32%  0.235   0.26%  0.967     LE-msrd   6437   3.44%  0.232   -0.85%  0.824  

10  EV-only  

 LE-dft  

 29.6  

 27.6  

  

 -6.80%  

  

0.042  

  

  

  

  

  

  

 10  

  

  

 EV-only   5707          

 LE-dft   5727   0.36%  0.883      

 LE-msrd   27.4   -7.64%  0.033   -0.91%  0.807     LE-msrd   5633   -1.30%  0.474   -1.65%  0.476  

15  EV-only   26.2             15  

  

  

 EV-only   5349          

 LE-dft   25.3   -3.21%  0.214         LE-dft   5397   0.91%  0.624      

 LE-msrd   24.8   -5.14%  0.263   -2.00%  0.665     LE-msrd   5278   -1.32%  0.675   -2.21%  0.480  

25  EV-only   24.5             25  

  

  

 EV-only   4997          

 LE-dft   22.6   -8.04%  0.000         LE-dft   4997   -0.02%  0.993      

 LE-msrd   22.5   -8.20%  0.008   -0.17%  0.945     LE-msrd   4973   -0.48%  0.800   -0.47%  0.819  

50  EV-only   23.9             50  

  

  

 EV-only   4680          

 LE-dft   24.0   0.15%  0.950         LE-dft   4967   6.12%  0.050      

 LE-msrd   23.8   -0.58%  0.713   -0.73%  0.719     LE-msrd   4961   6.01%  0.002   -0.10%  0.964  

100  EV-only   26.4             100  

  

  

 EV-only   4843          

 LE-dft   28.5   7.67%  0.063         LE-dft   5521  13.98%  0.000      

 LE-msrd   28.8   9.11%  0.015   1.33%  0.719     LE-msrd   5457  12.68%  0.073   -1.14%  0.825  

PR = equipped vehicle penetration rate; EV-only = equipped vehicles only; LE-dft = location estimation algorithm using default turning 

movements; LE-msrd = location estimation algorithm using measured turning movements; EV Diff = percent difference from EV-only 

results; LE-dft Diff = percent difference from LE-dft results; P-values represent the results of a two-tailed t-test assuming unequal 

variances.  
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Figure 13. Performance of PMSA Using Equipped Vehicle Locations Only (EV-only), Supplemented With the 

Location Estimation Algorithm Using Default Turning Movements (LE-dft), and Field-Measured Turning 

Movements (LE-msrd) As Compared to Coordinated-Actuated Timing Plan.  Measures of effectiveness were 

(a) average delay, (b) average speed, (c) average stopped delay, and (d) total number of stops.  The location 

estimation algorithms were not statistically different.  Both performed better than the EV-only scenario at a 

penetration rate between 15% and 25% but worsened performance at penetration rates of 50% and higher. 

  

(Goodall, 2013).  When this occurs, the PMSA is essentially acting with an uncoordinated fixed 

time plan, which although effective at isolated intersections, fails to react to the platoon arrivals 

in a signalized corridor.  The arterial location estimation algorithm, by estimating more vehicles 

than are actually present when used at high penetration rates, may encourage this effect.  In any 

event, the evidence suggests that the arterial location estimation algorithm should not be used at 

penetration rates of 50% and higher. 

 

Performance of Default vs. Measured Turning Volumes 

 

Two versions of the arterial location estimation algorithm were tested.  The first used the 

default static turning percentage to assign probabilities that inserted vehicles will turn at 

downstream intersections.  The default percentages were 10% probability of turning right, 10% 

probability of turning left, and 80% probability of traveling straight through.  Default turning 

probabilities were tested so that the PMSA could employ the arterial location estimation 

algorithm while still adhering to its fourth objective to protect driver privacy by avoiding the 

collection of vehicle trajectories over time, whether aggregated or individualized.  Turning 
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movements were considered aggregated vehicle trajectories.  The second version of the arterial 

location estimation algorithm used the field-measured turning percentages to assign probabilities. 

 

As may be seen from Table 6 and Figure 13, the differences between measured and 

default turning percentages were statistically insignificant.  It is worth noting that although the 

significance was small (P  > 0.34 in all cases), the measured turning movements outperformed 

the default turning movements in all measures of effectiveness when the penetration rate was 

25% or smaller.  It is possible that the benefits of measured turning movements were small 

because of the characteristics of the test network.  In the model of U.S. 50 used in the evaluation, 

there were few lanes with shared turns (i.e., through and left or through and right combined 

lanes), and the few that had them had very low volumes.  Most vehicles inserted into a queue had 

only one choice of where to turn, and the turning movement decisions affected their decisions 

only at downstream intersections.   On a network with many shared turn lanes, such as an urban 

network, the turning decision becomes much more important.  On these networks, the measured 

turning movements would likely outperform the default turning movements, although more 

research would be needed for certainty. 

 

Freeway Evaluation 

 

As discussed previously, the freeway location estimation algorithm was tested using 

vehicle trajectory data from the NGSIM project, a field-collected dataset of vehicle movements 

along several corridors in the United States (FHWA, 2010).  A portion of vehicles in the dataset 

were randomly assigned as unequipped vehicles, and their trajectories were removed from the 

evaluation dataset. 

  

Table 7 shows summary statistics from the I-80 simulation using the freeway location 

estimation algorithm.  The table uses the same metrics as in Table 3, defined previously. 

 

The algorithm was tested at various penetration rates between 5% and 100%.  Although 

the algorithm should never be used at the 100% penetration rate as it produces only noise, in 

implementation the actual percentage of EVs may not be known.  In some circumstances, 

penetration rates may approach 100% while the location algorithm is still running, and therefore 

it is useful to investigate the error produced by the freeway location estimation algorithm in these 

circumstances. 

 

In the 100% connected vehicle penetration rate scenario, the number of vehicles inserted 

was unusually high at 116,820 on a network with a measured volume of only 2,460 vehicles.  

The number of insertions was higher because there are more EVs able to trigger insertions.   

 
Table 7. Summary Statistics of Evaluation of Freeway Location Estimation Algorithm 

Penetration rate (%)  10   25   50   70   100 

Number of insertions  6,731   8,459   7,320  88,761   16,820 

Number of equipped vehicles  261   634   1,219   1,712   2,460 

Average inserted vehicle lifespan (s) 6.63 4.78 3.12 2.30 1.47 

Insertions per real vehicle 6.79 15.60 27.31 36.01 47.39 

Insertions per equipped vehicle 64.1 60.6 55.2 51.8 47.4 

Equipped vehicle-seconds per insertion 1.89 2.13 2.35 2.50 2.72 

Total inserted vehicle-seconds 31,622 183,843 210,038 204,150 171,725 



33 

 

Usually, this would dramatically increase the estimated volume of the network.  

However, the inserted vehicles do not survive very long once inserted, averaging only 1.47 

seconds per vehicle before being deleted from the simulation entirely.  Across all penetration 

rates, there were many more inserted vehicles than there were equipped or unequipped vehicles.  

This does not mean that the algorithm overestimated the number of unequipped vehicles.  Rather, 

the inserted vehicles do not survive very long, averaging between 1 and 7 seconds before 

deletion.  An unequipped vehicle may be “estimated” by several inserted vehicles during the 20 

to 60 seconds needed to traverse the study section. 

 

The EVs in the algorithm inserted vehicles at similar rates regardless of the EV 

penetration rate, with each EV triggering an insertion every 1.89 seconds at a 10% penetration 

rate and once every 2.72 seconds at a 100% penetration rate.  This suggests that vehicles exhibit 

unexpected behavior quite often in congestion, even when there are no unequipped vehicles to 

which they can react. 

 

 Sensitivity Analysis of Inserted Vehicle Survival Times 

 

The short survival times shown in Table 7 were investigated further.  Vehicle insertions 

that are quickly deleted after overlapping with an EV may indicate that the vehicle was placed in 

an incorrect position.  This could occur for several reasons: the acceleration data for the 

following vehicle may have been inaccurate or the driver may have deviated from a car-

following model, attributable to either sudden braking (vehicles inserted unnecessarily) or 

inadequate braking (vehicle is inserted too far ahead, and nearby other EVs).  Vehicle trajectories 

from VISSIM represent a best case scenario for the freeway location estimation algorithm, as 

both are based on the Wiedemann model and therefore should predict similar vehicle 

movements.  The desired speeds and several other inputs used in the freeway location estimation 

algorithm's calculations were randomized to avoid this similarity.  Figure 14 shows the number 

of vehicles inserted using the freeway location estimation algorithm on the I-80 data at different 

penetration rates.  The 100% penetration rate produced the most short-lived insertions and the 

fewest long-lived insertions.  With lower penetration rates, more inserted vehicles survived for 

longer periods and produced fewer insertions overall.  

 

  The general performance of the algorithm when including estimated vehicles with 

different lifespans is shown in Figure 15.  In this figure, the grayscale represents vehicle 

densities, with black representing 0 and white representing 20 vehicles.  Densities across all 

lanes of I-80 are shown for each second and 30-meter segment.  The top row shows the ground 

truth densities, and the lower rows show the EV and estimated vehicle densities at different 

penetration rates and with different inserted vehicle lifespans, e.g., ≥0 seconds, ≥1 second, etc.  

 

As seen in Figure 15, the number of unequipped vehicles was drastically overestimated 

when all vehicles were included regardless of survival time.  Densities appeared much more 

realistic when only vehicles that had survived at least 1 second were included. 

 

The survival time of an inserted vehicle may be related to the quality of that estimate.  In 

order to measure the quality of an insertion, inserted vehicles were grouped with their respective 

nearest unequipped vehicle neighbor, similar to the technique used to determine the effective  
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Figure 14. Number of Inserted Vehicles in Using Freeway Location Estimation Algorithm on I-80 Dataset 

Sorted by Exact Time of Survival in Seconds Across Several Initial Equipped Vehicle Penetration Rates 

  

penetration rate.  The distance between a newly inserted vehicle and its nearest unequipped 

vehicle provides a quantitative measure of the relative accuracy of an insertion.  Figure 16 shows 

the median absolute error of an insertion’s initial position using this described method.  Some 

insertions cannot be paired with an unequipped vehicle because there were more insertions than 

unequipped vehicles.  These insertions were ignored in this analysis.  This is why the 100% 

penetration rate was not included in the chart, because there were no unequipped vehicles with 

which to pair and return distance errors.  In Figure 16, the median distance error decreases 

dramatically when a vehicle survives 0 seconds when compared to vehicles that survive 1 second 

or longer.  A similar effect was found across all penetration rates, and a similar improvement in 

error was not seen as survival time increased from after 1 second.  Based on these findings, only 

vehicles that survived at least 1 second were considered in the final analyses.  

 

Results After Removing Short-Life Insertions 

 

The remainder of the analysis focused on datasets where any vehicles that survived less 

than 1 second were removed.  This represents the algorithm in its finalized form. 

 

Because the freeway location estimation algorithm requires vehicle interactions to 

produce any estimates, it requires warm-up time and space.  Figure 17 shows estimated vehicle 

densities for the final 220 meters (722 feet) of the evaluation freeway segment after a 60-second  
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Figure 15. Densities of Estimated and Observed Vehicles at Various Penetration Rates and Survival Times. 

From left to right, each column represents the densities when vehicles with survival times of  ≥0,  ≥1,  ≥2, and 

≥3 seconds, respectively, are included in the counts.  Densities are over all lanes, taken each second over 30-

meter sections.  The grayscale represents vehicle densities, with black representing 0 and white representing 

20 vehicles. 

  

initialization at various penetration rates.  The left side shows only EVs, and the right shows the 

densities of both EVs and inserted vehicles.  Densities are much more accurate downstream of 

congestion (vehicles travel bottom to top in Figures 15 and 17) as seen at 25% penetration rates.  

The algorithm occasionally missed traffic phenomena at low penetration rates, such as the wide 

moving jam between 5:18 and 5:20, which became visible only at a 50% penetration rate using 

the freeway location estimation algorithm.  At higher penetration rates, because there were so 

few unequipped vehicles in the network, the algorithm often overestimated densities, as seen at a 

100% penetration rate and to a lesser extent at 70% penetration.  In spite of its shortcomings, the 

algorithm provided a substantial improvement over EVs alone at low and medium penetration 

rates near congestion.  

 

 The characteristics of the freeway location estimation algorithm can be demonstrated by 

analyzing vehicle trajectories.  Figure 18 shows the trajectories of equipped, unequipped, and 

inserted vehicles over a small portion of the I-80 dataset at a 25% penetration rate.  In the figure, 

inserted vehicles are often initially placed near an unequipped vehicle.  However, because the  



36 

 

 
Figure 16. Median Absolute Error of Initial Position of Inserted Vehicles vs. Exact Survival Time of the 

Vehicles.  The error represents the longitudinal distance to the nearest unequipped vehicle in the same lane at 

the same time, while ensuring a 1-to-1 relationship between inserted and unequipped vehicles, described as 

the effective penetration rate. 
 

locations of all unequipped vehicles have not been estimated, there is often little traffic nearby 

with which to interact.  As a result, the inserted vehicle accelerates to free flow speed until it 

encounters an EV or another inserted vehicle.  Essentially, the inserted vehicles are “driving” 

themselves into position.  Estimated vehicles are continually inserted behind the original 

observation and continue to drive themselves into place.  This occurs several times in Figure 18 

at between 1,140 and 1,160 seconds.  As a result, vehicle speeds as estimated by the algorithm 

are often higher than in actuality, e.g., at a 25% penetration rate, the average speed of estimated 

vehicles was 27% higher than speeds of observed unequipped vehicles.  

 

Effective Penetration Rate 

 

Table 8 shows the effective penetration rates of the I-80 data at various accuracy 

distances and actual penetration rates.  At very low distances of ρ  ≤ 3 meters, the algorithm 

generates more incorrect than correct estimates.  In addition, at actual penetration rates above 

80%, there are few unequipped vehicles to detect and therefore the algorithm performs poorly. 

The algorithm is most effective at penetration rates of 70% or less with minimum accuracy 

distances of 5 to 10 meters (16 to 33 feet).   
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Figure 17. Heat Map of Densities Each Second for 30-Meter (98-Foot) Segments of I-80 at Various 

Penetration Rates Both With and Without Freeway Location Estimation Algorithm.  Accuracy is improved at 

low penetration rates, but densities are often overestimated at high penetration rates. 

 

Ramp Metering Application 

 

Used alone, the freeway location estimation algorithm is useful for detecting highway 

conditions and providing an estimate of densities in low- or no-detection segments.  However, by 

providing estimates of individual vehicle locations, the algorithm should also be able to improve 

the performance of some connected vehicle applications at low penetration rates.  To test this 

theory, the freeway location estimation algorithm was applied to a connected vehicle ramp 

metering algorithm called the GAP algorithm. 

 

Description of GAP Algorithm 

 

 The GAP algorithm is a ramp metering strategy developed by Park (2008).  The GAP 

algorithm analyzes the speeds, accelerations, and locations of mainline vehicles upstream of a 

freeway on-ramp to predict future gaps in the rightmost lane at the merge area in the near future.  

On-ramp vehicles receive a green signal by the ramp meter when a gap is predicted on the  
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mainline.  If no gap is predicted, the ramp vehicles are held at the signal.  Whereas traditional 

ramp metering algorithms release vehicles at a fixed rate over a set time period, the GAP 

algorithm releases vehicles at irregular rates based on the prediction of gaps in mainline traffic. 

 

  
Figure 18. Trajectories of Equipped, Observed Unequipped, and Inserted Vehicles Over Portion of I-80 

at 25% Equipped Vehicle Penetration Rate.  Estimated vehicles generally have few vehicles with which to 

interact and therefore drive forward unimpeded, eventually matching an observed vehicle’s trajectory.  As a 

result, estimated speeds are often higher than observed speeds at low penetration rates. 

  
Table 8. Effective Penetration Rates of I-80 at Various Accuracies and Actual Penetration Rates 

Accuracy 

Distance ρ (m) 

Penetration Rate (%) 

 5   10  20  30  40  50   0   70   100  

1  -7.5   -1.6   -0.6   -3.0  6.7   8.4  30.1   3.2   83.5 

2 -2.8 -3.2 1.3 9.6 18.9 29.3 39.5 50.6 83.5 

3 1.8 4.9 12.5 21.3 30.0 39.2 48.0 57.1 83.5 

4 5.9 12.2 22.4 31.5 39.6 47.6 55.0 62.4 83.5 

5 9.4 18.2 30.4 39.6 47.1 54.2 60.5 66.7 83.5 

6 12.1 22.7 36.6 45.8 52.9 59.2 64.6 69.8 83.5 

7 14.1 26.2 41.1 50.4 57.2 62.8 67.7 72.1 83.5 

8 15.6 28.6 44.4 53.8 60.3 65.5 69.9 73.8 83.5 

9 16.7 30.5 46.9 56.3 62.6 67.4 71.5 75.1 83.5 

10 17.5 31.8 48.7 58.0 64.3 68.9 72.7 75.9 83.5 

         Values in italics indicate improvements over the actual penetration rates. 
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The GAP algorithm relies on two calculations: the position of the on-ramp vehicle, and 

the positions of the mainline vehicles.  In the implementation tested here, the on-ramp vehicle is 

expected to follow the Wiedemann car-following model.  Upon receiving a green phase, an on-

ramp vehicle is expected to hold its current speed for 1 second as the driver reacts to the signal 

and then accelerate at the rate described in Equation 29.  

 

 

 1
40

3.5
3.5= −+ tt va  [Eq. 29] 

 

where 

 

at = acceleration at time t (m/s
2
) 

vt-1 = speed at time t-1 (m/s). 

 

The GAP algorithm then predicts the future positions of vehicles on the mainline in the 

right lane nearest the on-ramp.  Future vehicle positions are predicted using the fundamental 

equation as shown in Equation 30  

 

 tvtaxxt 0

2

00
2

1
= ++  [Eq. 30] 

 

where  

 

xt, x0 = vehicle positions at time t and initial time measurement, respectively. 

 

In the GAP algorithm, at each time step, the vehicle on the on-ramp next in line at the 

meter has its position projected several time steps into the future. 

 

The positions of vehicles in the mainline’s right lane are also projected.  If a gap exists at 

the on-ramp vehicle’s projected position before the on-ramp vehicle is projected to reach the end 

of the merge area, the on-ramp vehicle receives a green signal.  If no gap is detected at any of the 

projected times, the ramp meter is set to red.  Vehicle positions are re-calculated each second, 

and the minimum duration of a green signal is 2 seconds.  To prevent backups, the ramp meter is 

set to green if there are any stopped vehicles on the most upstream 50-meter (164-foot) section of 

the ramp. 

 

 Evaluation of GAP Algorithm With and Without Location Estimation 

 

The test network consisted of a theoretical two-lane freeway with a volume of 4,600 

vehicles per hour; a single-lane on-ramp with a volume of 600 vehicles per hour; and an off-

ramp with a volume of 200 vehicles per hour.  A diagram of the test network is included in 

Figure 19.  



 

Figure 19

  

As noted previously, the freeway location estimation 

downstream of congestion.  To generate the necessary congestion on the test network, a three

lane to two-lane merge was placed on the mainline approximately 

meter’s merge area.  This generates

congested freeway networks and is placed far enough upstream that vehicle arrivals at the ramp 

meter’s merge area are not uniform.

 

The GAP algorithm was originally developed for a 100%

2008).  In Park’s implementation, the GAP algorithm was tested against the fairly sophisticated 

semi-actuated traffic metering system (SATMS) used in Los Angeles an

California (Chu et al., 2009).  The 

using different random seeds and 

across all metrics, using a P-value threshold of 0.10.

 

Although not evaluated in Park’s work, at low

estimation algorithm frequently predicts gaps where there are none, and performance suffers as 

expected.  By use of the freeway location estimation algorithm

undetected mainline vehicles, i.e.

With better estimations of freeway vehicle positions, the GAP algorithm should theoretically 

make better gap predictions and therefore improve flow and reduce delay and queues.

 

The GAP algorithm was tested

75%, and 100%, both with and without the 

metering strategy designed for the expected flow rate at the ramp of one vehicle 

was used as a performance baseline. 

 

The freeway location estimation algorithm demonstrates a statistically significant effect 

on the performance of the GAP algorithm at low and medium penetration rates.  At a 10% 

penetration rate, the GAP algorithm was able to 

traveled, with no measurable effect in any other area.  The freeway location estimation 

algorithm’s effect was more noticeable at 25% and 50% penetration rates, with several metrics 

within or near a 10% significance level.  As shown from

estimation algorithm produces more incorrect than correct estimates at high penetration rates, 

and as expected, no measurable benefit was found at a 75% or 100% penetration rate.
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Figure 19. Diagram of Ramp Metering Test Network 

freeway location estimation algorithm is effective 

o generate the necessary congestion on the test network, a three

lane merge was placed on the mainline approximately 1 mile upstream of the ramp 

This generates the types of vehicle interaction that would occur in many 

congested freeway networks and is placed far enough upstream that vehicle arrivals at the ramp 

meter’s merge area are not uniform. 

The GAP algorithm was originally developed for a 100% EV penetration rate

In Park’s implementation, the GAP algorithm was tested against the fairly sophisticated 

actuated traffic metering system (SATMS) used in Los Angeles and Orange County, 

The GAP algorithm was simulated 10 times for each scenario

using different random seeds and produced statistically similar performances for each

value threshold of 0.10. 

Although not evaluated in Park’s work, at low EV penetration rates, the freeway location 

frequently predicts gaps where there are none, and performance suffers as 

freeway location estimation algorithm, the positions of some previously 

undetected mainline vehicles, i.e., those without the ability to communicate, can be estimated. 

With better estimations of freeway vehicle positions, the GAP algorithm should theoretically 

make better gap predictions and therefore improve flow and reduce delay and queues.

The GAP algorithm was tested at connected vehicle penetration rates of 10

, and 100%, both with and without the freeway location estimation algorithm. 

metering strategy designed for the expected flow rate at the ramp of one vehicle 

performance baseline.  Table 9 shows the results of the analysis.   

The freeway location estimation algorithm demonstrates a statistically significant effect 

on the performance of the GAP algorithm at low and medium penetration rates.  At a 10% 

penetration rate, the GAP algorithm was able to increase vehicle speed in the merge area distance 

traveled, with no measurable effect in any other area.  The freeway location estimation 

algorithm’s effect was more noticeable at 25% and 50% penetration rates, with several metrics 

within or near a 10% significance level.  As shown from the I-80 analysis, the freeway location 

estimation algorithm produces more incorrect than correct estimates at high penetration rates, 

and as expected, no measurable benefit was found at a 75% or 100% penetration rate.

 

is effective only near or 

o generate the necessary congestion on the test network, a three-

mile upstream of the ramp 

the types of vehicle interaction that would occur in many 

congested freeway networks and is placed far enough upstream that vehicle arrivals at the ramp 

ion rate (Park, 

In Park’s implementation, the GAP algorithm was tested against the fairly sophisticated 

d Orange County, 

ated 10 times for each scenario 

for each scenario 

freeway location 

frequently predicts gaps where there are none, and performance suffers as 

, the positions of some previously 

ut the ability to communicate, can be estimated.  

With better estimations of freeway vehicle positions, the GAP algorithm should theoretically 

make better gap predictions and therefore improve flow and reduce delay and queues. 

at connected vehicle penetration rates of 10%, 25%, 50%, 

location estimation algorithm.  A fixed time 

metering strategy designed for the expected flow rate at the ramp of one vehicle every 6 seconds 

    

The freeway location estimation algorithm demonstrates a statistically significant effect 

on the performance of the GAP algorithm at low and medium penetration rates.  At a 10% 

erge area distance 

traveled, with no measurable effect in any other area.  The freeway location estimation 

algorithm’s effect was more noticeable at 25% and 50% penetration rates, with several metrics 

80 analysis, the freeway location 

estimation algorithm produces more incorrect than correct estimates at high penetration rates, 

and as expected, no measurable benefit was found at a 75% or 100% penetration rate. 
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Table 9. Performance of GAP Ramp Metering Algorithm With and Without Freeway Location Estimation 

Algorithm and Compared Against Fixed Time Metering Strategy 
CV 

Penetration 

Rate 

Vehicle 

Prediction 

Algorithm 

Delay/ 

Vehicle 

(s) 

Network 

Speed 

(km/h) 

Distance 

Traveled 

(km) 

 

Number 

of Stops 

Speed Near 

Merge Area 

(m/s) 

−   Fixed Time 

Meter  

 95.5  48.1  8597  7819  17.1 

10%  Off  94.0 48.5  8618  7745  15.7 

On 87.7  50.1  8680  7481  17.1 

Difference -6.6%  3.4%  0.7%  -3.4%  8.4% 

Loc. Est. p-value  0.261  0.108 0.073*  0.352  0.056* 

Fixed Time p-

value 

 0.133  0.126  0.029*  0.222  0.991 

25%  Off  94.4  48.3  8605  7768  15.6 

On  86.9  50.3  8675  7443  16.8 

Difference  -8.0%  4.1%  0.8%  -4.2%  7.2% 

Loc. Est. p-value  0.085*  0.014*  0.017*  0.107  0.031* 

Fixed Time p-

value  

0.077* 0.086*  0.031*  0.152  0.808 

50% Off  87.7  49.9  8659  7390  16.4 

On  84.1  51.0  8682  7252  17.2 

Difference  -4.2%  2.1%  0.3%  -1.9%  4.8% 

Loc. Est. p-value  0.262  0.032*  0.107  0.275  0.012* 

Fixed Time p-

value 

 0.024*  0.027*  0.021*  0.031*  0.892 

75% Off  84.6  50.8  8682 7261  17.8 

On  84.3  50.9  8682  7303  18.0 

Difference  -0.4%  0.3%  0.0%  0.6%  1.3% 

Loc. Est. p-value  0.909  0.646  0.965  0.441  0.540 

Fixed Time p-

value 

0.029*  0.032*  0.019*  0.050*  0.494 

100% Off  80.0  52.0  8695  7246  20.7 

On  80.8  51.8  8689  7285  20.5 

Difference  1.0%  -0.4%  -0.1%  0.5%  -1.1% 

Loc. Est. p-value  0.620  0.314  0.214  0.155  0.599 

Fixed Time p-

value  

0.006*  0.006*  0.015*  0.043*  0.013* 

CV = connected vehicle; Loc. Est. = location estimation.  

In all cases, n = 10 and asterisks indicate p < 0.10.   

 

It is worth noting that the GAP algorithm did not reduce benefits at high penetration 

rates, even when producing many incorrect vehicle location estimates.  This suggests that the 

algorithm can remain active even during periods of high connected vehicle penetration rates 

without degrading the performance of the GAP algorithm. 

 

 

 

CONCLUSIONS 

 

• It is possible to estimate the locations of some unequipped vehicles on an arterial or freeway 

with a reasonable degree of accuracy and to use these estimations to improve the 

performance of a connected vehicle mobility application.  
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• With adequate data on connected vehicle trajectories, the positions of a portion of 

unequipped vehicles on arterials and freeways can be estimated based on EV positions and 

behaviors.  On arterial through movements, more estimates are correct than incorrect using a 

distance error of approximately 7 meters (23 feet), and accuracy is substantially higher within 

150 meters of an intersection.  In tests based on empirical freeway vehicle trajectories, more 

estimates were correct than incorrect using a distance error of approximately 4 meters (13 

feet) at penetration rates less than 30% and 5 meters (16 feet) at penetration rates less than 

60%. 

 

• The arterial location estimation algorithm significantly improves queued vehicle count 

estimates simply by inserting vehicle estimates into observed gaps in the queue.  Queued 

vehicle count is an important metric for traffic signal timing applications. 

 

• The arterial location estimation algorithm can improve the queue length estimations at low 

EV penetration rates but only if there is one or more upstream intersections to generate 

inserted vehicles.  The research suggests the improvement decreases when there are too many 

upstream intersections (in the network analyzed, queue length estimation accuracy decreased 

from two to three upstream intersections).  This indicates that the algorithm may 

overestimate the number of unequipped vehicles in a large network, an assumption that 

requires further investigation. 

 

• Provided the default probabilities are realistic, there is no significant performance difference 

between when inserted vehicles are assigned turning probabilities based on field-measured 

turning movement counts and when they are assigned turning probabilities based on default 

turning movement counts. 

 

• The location estimation algorithms generate small improvements in the performance of 

certain connected vehicle mobility applications at low EV penetration rates.  On arterials, the 

traffic signal control algorithm PMSA was tested and significant improvements in delay, 

stopped delay, and speed occurred at penetration rates between 10% and 25%.  Benefits were 

small and were statistically significant (P < 0.05) only in a few circumstances.  No 

performance differences were found between assigning turning probabilities to inserted 

vehicles based on field-measured turning movements or assigning turning probabilities based 

on default turning movements.  On freeways, a connected vehicle ramp metering algorithm 

called the GAP algorithm was tested.  By using the freeway location estimation algorithm, 

the performance of the GAP algorithm was improved significantly at low EV penetration 

rates.  Most benefits came between 10% and 50% connected vehicle penetration rates.  At 

higher penetration rates, the freeway location estimation algorithm did not improve or 

degrade the performance of the GAP algorithm.  The statistical significance of the 

improvement of the GAP algorithm was difficult to measure, as ramp metering often 

produces only minor improvements in simulation. 

 

• The arterial location estimation algorithm may worsen performance of a connected vehicle 

mobility application for arterials at high EV penetration rates.  When the arterial location 

estimation algorithm was tested on the PMSA, the system experienced higher delay, lower 

speeds, and increases in stops at 50% and 100% penetration.  Without the arterial location 
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estimation algorithm, the PMSA alone outperformed a coordinated-actuated timing plan at 

EV penetration rates of 25% to 100%.  In general, the arterial location estimation algorithm 

should not be used at higher penetration rates. 

 

• With the freeway location estimation algorithm, vehicle estimates with lifespans of less than 

1 second (i.e., vehicles that are able to move forward in the simulation at least one time step 

without being overlapped by an EV and therefore deleted) have lower initial position errors.  

Based on this finding, the freeway location estimation algorithm does not consider vehicle 

insertions until they have survived at least 1 second. 

 

• Because the freeway location estimation algorithm bases its estimations off of vehicle 

interactions, some level of congestion is needed within or upstream of the study area to 

generate vehicle decelerations and provide adequate estimates. 

 

 

 

RECOMMENDATIONS 

 

1. The Virginia Center for Transportation Innovation and Research (VCTIR) in cooperation 

with VDOT’s Operations Division should continue to assess the quality of vehicle data 

generated in a connected vehicle deployment to determine whether real-world data are of 

sufficient quality to be used in the two location estimation algorithms developed in this study.  

Data can be collected from the connected vehicle test beds in Fairfax County, Virginia, and 

Blacksburg, Virginia, or from other deployments.  Other developments and research in GPS 

accuracy, lane-level vehicle positioning, and acceleration sensor accuracy should also be 

tracked. 

 

2. If data quality is deemed accurate (from Recommendation 1) and if a connected vehicle 

application is evaluated in a field deployment, VCTIR should evaluate the use of the location 

estimation algorithms to attempt to improve the connected vehicle application’s performance 

at low penetration rates.  

 

 

 

BENEFITS AND IMPLEMENTATION PROSPECTS 

 

Benefits 

 

 The benefits to VDOT from implementing the recommendations provided are potential 

improvements in mobility on freeways and arterials, such as reduced delay and increased flow. 

These mobility benefits would be the direct result of an improved performance of connected 

vehicle mobility applications, such as ramp metering and traffic signal control, when few 

vehicles on the road are able to participate in a connected vehicle environment.  Researchers 

from academia, government, and industry can also benefit from this study by using the location 

estimation algorithms to improve the performances of their own connected vehicle mobility 

applications at low connected vehicle penetration rates. 
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Feasibility of Implementing Each Recommendation 

 

Recommendation 1 may be implemented by VCTIR as part of its general connected 

vehicle research.  

 

Implementation of Recommendation 2 is contingent on an affirmative finding from 

Recommendation 1.  Should this happen, VCTIR may track the progress of connected vehicle 

applications on the I-66 test bed in Fairfax County or in other deployments in Virginia and 

partner with the application’s owner to integrate the location estimation algorithms. 
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