	Standard Thic Tage - Report on Fe	derany Fundeu Froject
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/VTRC 05-R30		
4. Title and Subtitle		5. Report Date
		June 2005
Guidelines for Using Centerline R	umble Strips in Virginia	
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
C. S. Chen and B. H. Cottrell, Jr.		VTRC 05-R30
9. Performing Organization and A	ddress	10. Work Unit No. (TRAIS)
Virginia Transportation Research	Council	
530 Edgemont Road		11. Contract or Grant No.
Charlottesville, VA 22903		73778
12. Sponsoring Agencies' Name ar	nd Address	13. Type of Report and Period Covered
		Final
Virginia Department of Transporta	ition FHWA	
1401 E. Broad Street	P.O. Box 10249	14. Sponsoring Agency Code
Richmond, VA 23219	Richmond, VA 23240	
15. Supplementary Notes		

16. Abstract

Following the wide and successful use of continuous shoulder rumble strips, many state departments of transportations (DOTs) installed centerline rumble strips (CLRS) on rural two-lane and undivided multilane highways in an effort to reduce cross-over-thecenterline (COCL) crashes. COCL crashes include head-on, sideswipe opposite direction, fixed object run-off-the-road left, and noncollision.

The purpose of this research was to develop guidelines for using CLRS in Virginia based on a review of best practices and the analysis of Virginia COCL crash data from 2001 through 2003. The analysis procedures included data query and analyses of crash frequency, density, and rate. Areas and route locations with the highest COCL crashes and densities were identified as potential candidate sites for CLRS.

As of 2003, 24 state DOTs and two Canadian provinces were using CLRS. They are generally installed on a case-by-case basis. CLRS design patterns vary greatly among states, but the most commonly used types are continuous grooves 12 to 16 inches in length, 6 to 7 inches in width, and 0.5 inch in depth spaced 12 or 24 inches apart. The optimal CLRS patterns remain unknown.

Data analyses revealed that the distribution of COCL crashes in Virginia varied significantly with roadway system, road type, jurisdictional area, and road location. The statewide COCL crash densities were 0.13 and 0.71 crash per mile for secondary and primary roads, respectively. Fixed object run-off-the-road left was the predominant type of COCL crash followed by sideswipe opposite direction and head-on for undivided roads. The crash density of the primary system was 4.5 times higher than that of the secondary system.

Guidelines were developed that outline the application of CLRS, design dimensions, installation and maintenance, and other issues. The authors recommend that the Virginia Department of Transportation's Traffic Engineering Division implement the guidelines as a division memorandum. Although a benefit-cost ratio for this recommendation will vary with each site, a sample estimated benefit-cost ratio was at least 7.6 per mile.

17 Key Words		18. Distribution State	ment	to the public through
Centerline rumble strips, rumble strips, cross the centerline		No restrictions. This	document is available	
crashes, safety and undivided road s		NTIS, Springfield, V.	A 22161.	
19. Security Classif. (of this report) Unclassified	of this page)	21. No. of Pages 43	22. Price	

FINAL REPORT

GUIDELINES FOR USING CENTERLINE RUMBLE STRIPS IN VIRGINIA

C. S. Chen, P.E. Senior Transportation Engineer Traffic Engineering Division Virginia Department of Transportation

B. H. Cottrell, Jr. Senior Research Scientist Virginia Transportation Research Council

Virginia Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Transportation and the University of Virginia)

In Cooperation with the U.S. Department of Transportation Federal Highway Administration

Charlottesville, Virginia

June 2005 VTRC 05-R30

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Virginia Department of Transportation, the Commonwealth Transportation Board, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Copyright 2005 by the Commonwealth of Virginia.

ABSTRACT

Following the wide and successful use of continuous shoulder rumble strips, many state departments of transportations (DOTs) installed centerline rumble strips (CLRS) on rural twolane and undivided multilane highways in an effort to reduce cross-over-the-centerline (COCL) crashes. COCL crashes include head-on, sideswipe opposite direction, fixed object run-off-theroad left, and non-collision.

The purpose of this research was to develop guidelines for using CLRS in Virginia based on a review of best practices and the analysis of Virginia COCL crash data from 2001 through 2003. The analysis procedures included data query and analyses of crash frequency, density, and rate. Areas and route locations with the highest COCL crashes and densities were identified as potential candidate sites for CLRS.

As of 2003, 24 state DOTs and two Canadian provinces were using CLRS. They are generally installed on a case-by-case basis. CLRS design patterns vary greatly among states, but the most commonly used types are continuous grooves 12 to 16 inches in length, 6 to 7 inches in width, and 0.5 inch in depth spaced 12 or 24 inches apart. The optimal CLRS patterns remain unknown.

Data analyses revealed that the distribution of COCL crashes in Virginia varied significantly with roadway system, road type, jurisdictional area, and road location. The statewide COCL crash densities were 0.13 and 0.71 crash per mile for secondary and primary roads, respectively. Fixed object run-off-the-road left was the predominant type of COCL crash followed by sideswipe opposite direction and head-on for undivided roads. The crash density of the primary system was 4.5 times higher than that of the secondary system.

Guidelines were developed that outline the application of CLRS, design dimensions, installation and maintenance, and other issues. The authors recommend that the Virginia Department of Transportation's Traffic Engineering Division implement the guidelines as a division memorandum. Although a benefit-cost ratio for this recommendation will vary with each site, a sample estimated benefit-cost ratio was at least 7.6 per mile.

FINAL REPORT

GUIDELINES FOR USING CENTERLINE RUMBLE STRIPS IN VIRGINIA

C. S. Chen, P.E. Senior Transportation Engineer Traffic Engineering Division Virginia Department of Transportation

B. H. Cottrell, Jr. Senior Research Scientist Virginia Transportation Research Council

INTRODUCTION

Following the wide and successful use of continuous shoulder rumble strips,¹ many state departments of transportation (DOTs) installed centerline rumble strips (CLRS) on rural twolane and undivided multilane highways in an effort to reduce cross-over-the-centerline (COCL) crashes. COCL crashes include head-on (HO), sideswipe opposite direction (SW-OP), fixed object run-off-the-road left (FO ROTR-L), and non-collision (NON-CO). CLRS were first installed on a 2.9-mile testing roadway section in Delaware in 1994.² Twenty-four states have since installed CLRS.³

The Virginia Department of Transportation (VDOT) has installed CLRS at Route 15 north of Lucketts in Loudoun County (1.5-mile, two-lane section installed October 1999) (see Figure 1); Route 1 near Fort Belvoir in Fairfax County (4.5-mile, four-lane section installed May 2003) (see Figure 2); and two sites on Route 460 between Suffolk City and Sussex County (9.4-mile, four-lane section installed August 2004) (see Figure 3).

CLRS is a relatively new technology because most installations have been completed since 2000.³ As a result, most CLRS evaluations are recent. Although the research on its technical and practical aspects remains in its initial stage, there is sufficient evidence to suggest that the use of CLRS has the potential to reduce traffic crashes.³ Several state DOTs claim positive results on safety in their crash data analyses.³

The VDOT draft strategic highway safety plan defines a system, organization, and process for managing the attributes of the roadway to achieve the highest level of safety by integrating the disciplines of other safety partners. This plan includes roadway departures as an emphasis area, and the target crashes are HO, SW-OP, and ROTR. Implementing roadway safety countermeasures including CLRS was listed as a strategy to address lane departures.⁴

Figure 1. CLRS on Route 15 in Loudoun County

Figure 2. CLRS on Route 1 in Fairfax County

Figure 3. CLRS on Route 460 in Sussex County

Undivided highways in the primary and secondary (P&S) systems make up the majority of the miles of highways in Virginia. In 2003, undivided P&S highways totaled 53,248 miles, accounting for 74.7 percent of the total highway mileage (71,243 miles) and 95 percent of the P&S systems (55,859 miles).⁵ These numbers include local roads and subdivision streets. Given the magnitude of the percentage of undivided highways in Virginia, the potential for enhancing safety by using CLRS presents a challenging opportunity for VDOT.

PURPOSE AND SCOPE

The purpose of this research was to develop guidelines for using CLRS in Virginia. The guidelines were to be based on a review of best practices and comprehensive analyses of COCL crash data in Virginia.

METHODS

The study objectives were achieved through five tasks:

- 1. Conduct a review of the literature on the use of CLRS.
- 2. Conduct an email survey of state DOTs to inventory their practices with regard to CLRS.

- 3. Obtain Virginia COCL crash data for the P&S systems.
- 4. Analyze the data to identify the crash distributions and patterns in Virginia, and identify those road types, design conditions, and areas with high COCL crashes.
- 5. Develop guidelines for the use of CLRS in Virginia.

Review of the Literature

The literature search was conducted through the use of computerized literature databases such as the Transportation Research Information Services.

The sample sizes, evaluation procedures, and conclusions of the studies were reviewed to assess their accuracy and reliability. This assessment was necessary because the analysis procedures and study conclusions addressed in the reports tended to vary significantly.

E-Mail Survey of State DOTs

An email survey was sent to the state DOT traffic engineers of all 49 states other than Virginia to determine which states use CLRS and to obtain information on how they are being used. The intent of the survey was to obtain best practices that might not have been uncovered in the literature review.

The email survey asked six questions:

- 1. Does your state DOT use centerline rumble strips?
- 2. When (under what conditions) do you install centerline rumble strips?
- 3. What do you install and where (design details including type of rumble strip, width, depth, spacing, location relative to centerline markings, median width, etc.)?
- 4. Have you done any studies on your centerline rumble strip experience?
- 5. Approximately how many miles of centerline rumble strips has your state DOT installed as of today?
- 6. Please provide any comments.

Virginia Crash Data

COCL crash data for the P&S systems were obtained from VDOT's highway and traffic information system (HTRIS) database using a query procedure to filter COCL crashes on paved

undivided primary and secondary highways. In addition to HO and SW-OP crashes, the procedure filtered the FO and NON-CO crashes to capture single-vehicle ROTR-L. The 3-year period for the data collected was 2001 through 2003. The system roadway mileages for all undivided paved roads were obtained from 2002 VDOT mileage data.

Data Analysis

The purpose of the crash data analysis was to identify the crash distributions and patterns in Virginia and identify those road types, design conditions, and areas that had a high number of COCL crashes in past years. The majority of undivided P&S roads are in rural areas, and their volume to capacity ratio is relatively low. However, the segments with higher numbers and densities of COCL crashes tend to be the roadways with higher volumes.

The COCL crash density, that is, total COCL crash frequency of study area divided by total road length, or the area average COCL crashes per mile, was the primary index used to identify the COCL crash experience for each study area for undivided roads. The four study areas identified were (1) statewide, (2) the VDOT district, (3) the county/city, and (4) the roadway section. Calculations were performed and completed using an Excel spreadsheet. The output of the analyses included COCL crash frequencies, COCL density, crash rates in some cases, and COCL crash types. The analysis focused on the following:

- 1. Two-way, undivided paved roadways in the P&S systems.
- 2. Crash types including HO, SW-OP, FO ROTR-L, and left-side NON-CO. The numbers do not include any angle, deer, or other animal crashes that could be associated with COCL collisions.

To quantify the COCL crash features and patterns on the P&S roads, the analyses included the following five categories:

- 1. *System analysis*, i.e., analyses of crash frequency and crash density and rates on P&S systems at the district and statewide levels.
- 2. *Jurisdictional analysis*, i.e., analyses of P&S roadway crash frequency and density on P&S roads by county/city.
- 3. *Route analysis,* i.e., analyses of P&S crash frequency and density on all route networks in Virginia.
- 4. *Priority analysis*, i.e., analyses of the top P&S COCL crash counties and routes. The top routes were defined in a two-step screening process. First, route sections with six or more crashes for the study period were identified. Second, these sites were further screened to identify road sections where the crash density was 1 or more crashes per mile. There were no rules governing the length of a section.

5. *Pattern analysis*, i.e., analyses including crash types and their percentages in COCL crashes; crash distributions on roadway categories and the relationship between crash frequencies and variables; etc.

Development of Guidelines

Information on the best practices of other state DOTs and VDOT's experience with CLRS was used to establish the guidelines. Developing the guidelines included identifying CLRS patterns, design standards, implementation concerns, maintenance criteria, and crash data collection procedures for safety analysis, public information approaches, cost estimates and possibly cost benefit analysis. Other issues addressed included pavement durability especially along the centerline joints, passing zones, use of CLRS with markings, adjacent land uses and the impact of other users along a road section with CLRS.

RESULTS AND DISCUSSION

Literature Review

CLRS Research/Practices

A total of 21 articles and reports were reviewed to identify the state of CLRS practices. The findings are discussed here.

- As of 2003, 24 state DOTs and two provinces in Canada had installed CLRS on their highways. The 24 states include Pennsylvania, Massachusetts, Minnesota, Colorado, Kansas, New Hampshire, California, Washington, Delaware, Maryland, Nevada, Virginia, Ohio, Idaho, and Wyoming. The states with the larger number of miles of CLRS are Pennsylvania, 1,500 miles; Minnesota, 66 miles; California, 48 miles; Washington, 44 miles; Maryland, 31 miles; and Colorado, 21 miles.³
- CLRS installations are composed of milled CLRS except for those in California, which are a mix of milled and raised types, and Virginia, which has both milled and rolled patterns in place.³
- CLRS design patterns vary greatly: 14 types are in practice nationwide. The groove lengths range from 8 to 18 inches; the two most commonly used lengths are 12 and 16 inches; the widths range from 5 to 7 inches; 6.5 inches is most common; the depth is typically 0.5 inch except in Oregon where 0.63 inch is the practice. Most state DOTs space CLRS 12 or 24 inches apart and use this spacing continuously. Some state DOTs use an alternating spacing pattern of 12 and 24 inches or 24 and 48 inches. Most state DOTs use CLRS only in no passing zones, although some also use them in passing zones.³

- Based on a Nevada survey report, four state DOTs (Pennsylvania, Oregon, Nebraska and Utah) have established CLRS specifications/criteria. Pennsylvania and Oregon have developed written draft guidelines.⁶
- Some reports/articles document the effect of CLRS installation on highway safety based on data analysis. Although the conclusions vary, some reports with larger sample sizes conclude that using CLRS has reduced related road crashes 12 to 29 percent.³

Five studies were of particular interest with regard to best practices:

- 1. A study by Persaud, Retting, and Lyon reported on the installation of centerline rumble strips on rural two-lane roads.⁷ This report was the only one reviewed that included statistical testing to determine the significant difference of crashes before and after CLRS installation. Data were obtained from seven states with a total of 210 miles of 98 CLRS (treated) sites on rural two-lane highways. The empirical Bayes procedure was used to control for the regression-to-the-mean effect, a major issue affecting the validity of a highway safety study. The study concluded that CLRS reduced frontal/sideswipe crashes by 21 percent and all types of crashes by 14 percent.
- 2. A study by Outcalt⁸ compared before and after crash data on a 17-mile road section in Colorado over a 44-month period. The installation of CLRS reduced HO and SW-OP crashes by 34 and 36.5 percent, respectively.
- 3. A study by Russell and Rys⁹ on the U.S. experience with centerline rumble strips on two-lane roads included a detailed survey regarding CLRS design standards. No conclusions about their use and effectiveness were presented. Additional research was suggested for two CLRS designs (i.e., continuous spacing of 12 inches on center and 12 inches long, and alternating spacing of 12 and 24 inches and 12 inches long with 0.5 inch depth for each).
- 4. A study by the Delaware DOT⁷ reported on the first recorded installation of CLRS in the United States; the installation was on a road section 2.9 miles long. The average annual crash frequency for 3 years before installation was compared to that for 8 years after installation. The CLRS installation was found to reduce HO crashes by 95 percent and drove-left-of-center crashes by 60 percent.
- 5. A study by Noyce¹⁰ based on several roadway sections less than 10 miles in length each found no significant change in crash frequencies before and after CLRS installations.

Issues Requiring Consideration

The literature review revealed the following issues that can be construed as problematic or at the very least unresolved with respect to the study at hand.

- Although a variety of CLRS patterns have been used, the optimal types have not been statistically identified. One study selected two patterns for additional testing based on noise and vibration tests.⁶ Although some findings were revealed, the optimal patterns remain unknown as the test results were inconclusive.
- Most evaluation results of the safety effects of CLRS were based on simple comparisons of crash data between before and after periods. This approach can overestimate or underestimate the magnitude of crash reductions because it fails to control the regression-to-the-mean effect. The conclusions regarding a reduction of crash rates vary greatly, from a 90 percent to a negative number.
- Although one research study (Persaud et al.)⁷ presented a statistical analysis, this study involved many variables and the crash reduction model employed makes some assumptions that may weaken the statistical analysis.
- Issues such as minimum requirements of road width and pavement structure for CLRS installation, maintenance activities, snowplowable markers, installation on roadway zones such as passing zones and special areas, use of CLRS with markers and pavement markings, bicycle traffic, special traffic control devices, noise effect on residences, etc., have not been considered thoroughly in any research effort.

Rumble Stripes

Several efforts are underway to demonstrate rumble stripes.^{11,12} Rumble stripes are pavement marking materials installed over rumble strips. Their purpose is to provide improved visibility of pavement markings especially under wet, night conditions. The audible warning provided when the stripes are crossed may be viewed as equally important or secondary to the visibility of the pavement marking, depending on the application. In the case of CLRS, enhanced wet night visibility is an added benefit. Several states are demonstrating or piloting rumble stripes, including Mississippi and Texas.^{11,12} The Mississippi DOT has experimented with rumble stripes on edgelines at several sites and concluded that in addition to the excellent audible warning, rumble stripes provide increased retroreflectivity of pavement markings similar to that of profiled markings. In a survey of motorists, it was concluded that the markings provided improved visibility of the markings under wet night conditions. Further information is available at <u>http://tcd.tamu.edu/documents/rumble/rumble/rumble1.htm;</u> see the Mississippi presentation and video clips.¹¹

Guidelines for Use of CLRS

The National Cooperative Highway Research Program (NCHRP) is planning a study, NCHRP Project 17-32, Guidance for the Design and Application of Shoulder and Centerline Rumble Strips,¹³ to provide guidance for the design and application of shoulder and centerline rumble strips. The objective of this project is to develop guidance for the design and application of shoulder and centerline rumble strips as an effective motor vehicle crash reduction measure while minimizing adverse operational effects for cyclists and adjacent property owners. Although they have proven to be cost-effective countermeasures for reducing COCL collisions, there are specific concerns regarding pavement durability at centerline joints, their use in passing zones, and their impact on motorcyclists.

Installing rumble strips to reduce ROTR or COCL crashes, with no consideration of impacts to other users, may lead to unintended outcomes. Some of the unresolved issues with installing either device include:

- minimum dimensions of the rumble strips necessary for effective vehicular warning with least potential for adverse effects
- optimal placement, including minimum criteria for lane and shoulder widths
- optimal longitudinal gaps in rumble strips to provide accessibility for cyclists while maintaining the effectiveness in reducing lane departures
- effectiveness and alternative designs for various speeds
- physical design of rumble strips with respect to "rideability" for motorcyclists and bicyclists
- noise produced by rumble strips on adjacent residents.

The study team will conduct a literature review of completed and ongoing studies on shoulder and centerline rumble strips and a survey of state and Canadian provincial transportation agencies to identify existing policies/guidelines governing the design and installation of shoulder and centerline rumble strips on rural and urban highways. The first major deliverable is an interim report documenting the results of these tasks and the following:

- the state of the practice in regard to rumble strips
- recommended practices based on the available information
- identification of issues that remain to be resolved through research
- a revised work plan, including an experimental design to address unresolved issues.

The study is expected to begin in spring 2005.

Survey of State DOTs

Responses were received from 21 of the 49 state DOTs for a 43 percent return rate. Eleven do not use CLRS (Georgia, Illinois, Iowa, Louisiana, Maine, Mississippi, New Hampshire, North Dakota, Ohio, Rhode Island, and South Dakota). Interestingly, 1 DOT had installed CLRS at two locations but did not plan to use them in the future. The installation was political and not supported by the traffic engineering staff. Two DOTs have written guidelines for CLRS deployment, 5 decide on using CLRS on a case-by-case basis, and 3 use other means to decide when to use CLRS. The Pennsylvania DOT's (PennDOT) guidelines encourage the use of CLRS on all two- and four-lane rural undivided 3R (Resurfacing, Rehabilitation & Reconstruction) projects where the annual average daily traffic (AADT) is greater than 1,500 and the pavement width is 20 ft or more.¹⁴ PennDOT concluded that CLRS is cost-effective at this AADT when a crash reduction factor of 20 percent is assumed. Oregon's guidelines state that to be eligible for CLRS installation, the crash history of a location should include a large number of crashes treatable by CLRS.¹⁵

The average CLRS groove design for the DOTs was 14.4 inches wide, 7 inches long, and 0.5 inch deep with 12-inch spacing. The mode for the CLRS groove design was similar to the mean with the exception of the width being 16 inches. Only PennDOT used an alternating spacing pattern with 24 and 48 inches as a standard, whereas the Kansas DOT used 12- and 24-inch alternating spacing as an alternative pattern. Oregon used 24-inch spacing as a standard but used 48-inch spacing in no passing zones. Two DOTs Oregon and Minnesota reported the use of two parallel sets of CLRS when a median at least 4 feet wide is present.

The results of the survey are summarized in Table A-1 in Appendix A.

Crash Data Analysis

COCL Crashes by VDOT District

Total COCL crashes and crash densities by VDOT district on the undivided P&S systems are shown in Tables 1 and 2, respectively:

- The total mileages of Virginia two-way, undivided paved roads are 5,826 miles and 37,703 miles the P&S systems, respectively. Undivided paved roads are 79.2 percent of the secondary and 75.1 percent of the primary systems.
- There were 8,919 COCL crashes statewide on a portion of the P&S paved roads in Virginia from 2001 to 2003. The total length of undivided paved roads cited in the query that produced 8,919 crashes is 19,782 miles or 45.5 percent (19,782/43,445) of total P&S undivided paved road mileages. This total excludes some roads such as those with pavement designated as light bituminous treatments and unimproved and some kinds of COCL crashes such as those involving angle and animal collisions. The split of P&S COCL crashes is 4,872 crashes, or 55 percent total, on secondary roads and 4,047 crashes, or 45 percent total, on primary roads. The split is within 10 percent, although the number of miles of secondary road system is 7.4 times greater than that for primary roads. The likely reason for this is the large differences in AADT between the two systems. That is, although the primary system has fewer miles, its typical traffic volume is greater than that of the secondary system.
- The COCL crash trends increased over time, especially for primary roads. From 2001 through 2003, the statewide COCL crashes increased 11.65 percent and 20.69 percent for secondary and primary roads, respectively.

• The COCL crash frequencies among the nine VDOT districts from the highest to the lowest, as shown in Table 1, were NOVA, Bristol, Salem, Staunton, Richmond, Culpeper, Fredericksburg, Lynchburg, and Hampton Roads.

The computed system COCL crash densities summarized in Table 2 reveal the following:

- The statewide undivided paved road COCL crash densities were 0.13 and 0.70 crashes per mile for the secondary and primary systems, respectively. The primary system crash density was thus 4.5 times higher than that of secondary system.
- The Virginia statewide undivided paved P&S system average COCL crash density was 0.21.

		Secondary			Primary		District
District	2001	2002	2003	2001	2002	2003	Total
NOVA	400	410	429	143	145	136	1663
Bristol	222	236	252	194	249	212	1365
Salem	194	185	225	134	162	187	1087
Staunton	166	193	196	136	154	183	1028
Richmond	169	142	174	127	141	169	922
Culpeper	92	114	125	128	147	172	778
Fredericksburg	126	118	151	128	100	136	759
Lynchburg	102	106	94	124	144	140	710
Hampton Roads	74	98	79	105	115	136	607
Statewide	1545	1602	1725	1219	1357	1471	8919

 Table 1. P&S COCL Crash Frequencies by VDOT District

 Table 2.
 P&S COCL Crash Densities by VDOT District for 2001–2003

District	Secondary			Primary			District P&S			Ranks in S/P
	Crashes	Miles	Density	Crashes	Miles	Density	Crashes	Miles	Density	
NOVA	1239	4182	0.3	424	946	0.45	1663	5128	0.32	1/9
Bristol	710	5490	0.13	655	697	0.94	1365	6187	0.22	5/1
Culpeper	331	4782	0.07	447	730	0.61	778	5512	0.14	7/8
Fredericksburg	395	5548	0.07	364	508	0.72	759	5912	0.13	6/7
Hampton Roads	251	3657	0.07	356	490	0.73	607	4147	0.15	9/5
Lynchburg	302	3909	0.08	408	508	0.81	710	4417	0.16	3/6
Richmond	485	2824	0.17	437	547	0.79	922	3371	0.27	4/2
Salem	604	3676	0.16	483	826	0.58	1087	4502	0.24	3/8
Staunton	555	3635	0.15	473	574	0.82	1028	4108	0.25	2/4
Statewide	4872	37703	0.13	4047	5826	0.7	8919	43,444	0.21	

- For the secondary system, the COCL crash densities among the nine VDOT districts from the highest to the lowest were NOVA, Richmond, Salem, Staunton, Bristol, Lynchburg, Fredericksburg, Culpeper, and Hampton Roads. The NOVA, Richmond, Salem, Staunton, and Bristol districts exceeded the average statewide secondary system crash density of 0.13. The NOVA crash density was 1.29 times higher than the average statewide secondary system crash density. This is likely due to the higher traffic volumes on NOVA roads.
- For the primary road system, the COCL crash densities among the nine VDOT districts from the highest to the lowest were Bristol, Staunton, Lynchburg, Richmond, Hampton Roads, Fredericksburg, Culpeper, Salem, and NOVA. Six districts exceeded the average statewide primary system crash density of 0.7: Bristol, Staunton, Lynchburg, Richmond, Hampton Roads, and Fredericksburg.
- For the total secondary and primary systems combined, the COCL crash densities densities among the nine VDOT districts from the highest to the lowest were NOVA), Staunton, Richmond, Salem, Bristol, Lynchburg, Hampton Roads, Culpeper, and Fredericksburg. District densities exceeding the statewide average of 0.21 included those of NOVA, Richmond, Staunton, Salem, and Bristol.

COCL Crashes in Terms of Road Jurisdiction Features

To focus analyses on areas with a higher number of COCL crashes and to identify their crash characteristics, the top crash counties, those with the highest frequencies, densities, and rates in each district, were verified in the analyses and summarized in Table 3.

- For the primary road system, the 10 highest COCL crash frequency counties/cities were Fairfax (185), Prince William (129), Albemarle (118), Suffolk (111), Augusta (108), Loudoun (88), Dickenson (82), Washington (82), Bedford (79), and Rockingham (79).
- For the primary road system, the 10 highest COCL crash density counties/cities were Prince William (1.37), Fairfax (1.21), Dickenson (1.04), Suffolk (0.99), Spotsylvania (0.94), Albemarle (0.86), Stafford (0.85), Powhatan (0.79), Carroll (0.74), and Washington (0.72).
- For the secondary road system, the 10 highest COCL crash frequency counties/cities were Fairfax (869), Chesterfield (345), Prince William (262), Buchanan (196), Augusta (158), Spotsylvania (144), Rockingham (137), Pittsylvania (119), Loudoun (108), and Washington (99).
- For the secondary road system, the 10 highest COCL crash density counties/cities were Buchanan (0.43), Fairfax (0.34), Prince William (0.3), Chesterfield (0.24), Spotsylvania (0.22), Montgomery (0.22), Stafford (0.21), Dickenson (0.17), Augusta (0.16), Roanoke (0.15), and Rockingham (0.15).

		Primary		Primary			Density					
District/	Primary	Road	Density	Crash	Secondary	Secondary	(Crash/	Secondary	Total	% of	Primary	Secondary
County/City	Crashes	Length	(Crash/Mi)	Rate	Crashes	Road Length	Mi)	Crash Rate	Crashes	District	DVMT	DVMT
NOVA									1663			
County/City												
Fairfax	185	152.28	1.21	7.2	869	2524.44	0.34	27.5	1054	63.38	7,013,162	8,671,822
Prince William	129	94.14	1.37	20.2	262	885.3	0.30	25.3	391	23.51	1,748,332	2,832,027
Loudoun	88	137.73	0.64	8.0	108	834.68	0.13	21.6	196	11.79	3,031,615	1,372,485
Cumulative	402	384.15	1.05	9.3	1239	4244.42	0.29	26.4	1641	98.68	11,793,109	12,876,334
Bristol									1351			
County/City												
Buchanan	47	71.83	0.65	32.5	196	459.02	0.43	173.5	243	17.99	396,374	309,550
Washington	82	113.59	0.72	43.1	99	747.44	0.13	70.4	181	13.4	521,400	385,131
Dickenson	82	78.9	1.04	121.3	68	402.96	0.17	146.2	150	11.1	185,143	127,452
Cumulative	211	264.32	0.80	52.4	363	1609.42	0.23	121.0	574	42.49	1,102,917	822,133
Culpeper									778			
County/City												
Albemarle	118	136.65	0.86	20.5	114	821.72	0.14	36.5	232	29.82	1,578,114	855,020
Fauquier	54	104.61	0.52	8.8	76	788.73	0.10	39.6	130	16.71	1,688,321	525,560
Louisa	71	119.4	0.59	46.9	26	503.19	0.05	30.5	97	12.47	414,992	233,592
Culpeper	51	74.97	0.68	16.3	43	470.56	0.09	50.8	94	12.08	857,683	231,721
Cumulative	294	435.63	0.67	17.7	259	2584.2	0.10	38.4	553	71.08	4,539,110	1,845,893
Fredericksburg									759			
County/City												
Spotsylvania	63	67.23	0.94	17.2	144	667.82	0.22	45.1	207	27.27	1,003,557	874,469
Stafford	39	45.77	0.85	12.4	103	487.58	0.21	39.4	142	18.71	863,705	716,469
Caroline	56	97.27	0.58	28.6	36	469.38	0.08	49.8	92	12.12	535,537	198,029
Cumulative	158	210.27	0.75	18.0	283	1624.78	0.17	43.3	441	58.10	2,402,799	1,788,967
Hampton									606			
County/City				10.0					1.50	• • • •	1 (0 - 0 - 0	
Sutfolk	111	112.53	0.99	18.9	59	542.95	0.11	46.4	170	28.05	1,607,923	348,725
Isle of Wight	45	81.37	0.55	15.5	41	433.69	0.09	50.1	86	14.19	796,419	224,029
Accomac	39	101.87	0.38	11.6	31	560.73	0.06	37.0	70	11.55	920,782	229,698
YORK	21	46.38	0.45	6.3	35	2/2.84	0.13	31.7	56	9.24	913,291	302,242
Southampton	27	95.1	0.28	10.5	27	6/1./1	0.04	29.7	54	8.91	/01,690	249,298
Cumulative	243	437.25	0.56	13.5	193	2481.92	0.08	39.1	436	/1.95	4,940,105	1,353,992

 Table 3. Counties/Cities with Highest COCL Crashes on P&S Undivided Roads

Lynchburg									710			
County/City												
Pittsylvania	75	181.8	0.41	19.0	119	1444.81	0.08	43.8	194	27.32	1,079,185	744,802
Campbell	38	112.93	0.34	8.7	79	661.87	0.12	47.9	117	16.48	1,192,444	451,593
Halifax	50	159.09	0.31	19.6	33	835.26	0.04	28.2	83	11.69	697,346	320,874
Cumulative	163	453.82	0.36	15.0	231	2941.94	0.08	41.7	394	55.49	2,968,975	1,517,269
Richmond									922			
County/City												
Chesterfield	41	129.89	0.32	3.0	345	1453.72	0.24	41.7	386	41.87	3,768,306	2,268,352
Powhatan	38	47.95	0.79	25.3	45	282.12	0.16	52.3	83	9	411,060	235,517
Cumulative	79	177.84	0.44	5.2	390	1735.84	0.22	42.7	469	50.87	4,179,366	2,503,869
Salem									1087			
County/City												
Bedford	79	152.44	0.52	20.7	84	952.53	0.09	48.1	163	15	1,045,664	478,871
Henry	59	106.29	0.56	14.1	89	684.73	0.13	50.4	148	13.62	1,147,030	484,233
Roanoke	41	67.37	0.61	9.8	87	561.3	0.15	59.1	128	11.78	1,142,699	403,331
Montgomery	24	51.48	0.47	10.1	98	444.64	0.22	87.3	122	11.22	649,658	307,533
Franklin	55	94.82	0.58	18.6	63	1048.16	0.06	35.0	118	10.86	810,315	493,304
Carroll	68	91.66	0.74	46.9	44	837.71	0.05	51.3	112	10.3	396,824	234,910
Cumulative	326	564.06	0.58	17.2	465	4529.07	0.10	53.0	791	72.77	5,192,190	2,402,182
Staunton									1028			
County/City												
Augusta	108	168.3	0.64	29.9	158	1000.87	0.16	78.8	266	25.88	990,425	549,009
Rockingham	79	156.04	0.51	22.1	137	887.67	0.15	66.3	216	21.01	979,646	565,783
Frederick	22	99.77	0.22	5.2	78	584.39	0.13	44.8	100	9.73	1,161,070	477,517
Rockbridge	47	113.5	0.41	38.2	51	612.2	0.08	80.2	98	9.53	337,305	174,222
Cumulative	256	537.61	0.48	20.2	424	3085.13	0.14	65.8	680	66.15	3,468,446	1,766,531

COCL Crashes by Route in Counties/Cities

COCL crashes on all route sections in counties/cities were analyzed, screened in a twostep process, and summarized in Tables B-1 and B-2 in Appendix B for primary and secondary roads, respectively. The top route COCL crashes and densities in the districts are listed in Tables 4 and 5. In the route density calculation, the route section length is the distance between the starting and ending points of COCL crashes on routes, not the distance between intersecting points of route and the county lines.

Tables 4 and 5 illustrate the following:

- The crash distributions of routes varied significantly with areas and locations, particularly for secondary roads. The sections of COCL crashes on primary roads tended to be longer than on secondary roads.
- The average crash density of the top 12 highest crash secondary routes was 5.53, which is 42 times higher than the statewide system average; the crash density of the top 12 primary routes was 3.73, 5.3 times higher than its statewide system average crash density.

							Total				
	Route			FO	SW-	NON-	COCL	MP	MP	Section	
District	No.	County	HO	ROTR	OP	CO	Crashes	Begin	End	(mi)	Density
NOVA	193	Fairfax	19	13	29	1	62	1.14	8.69	7.55	8.21
NOVA	1	Fairfax	14	3	23	1	41	178.2	186.9	8.66	4.73
Culpeper	53	Albemarle	4	10	23	0	37	0	9.39	9.39	3.94
Richmond	33	Henrico	10	5	7	0	22	3.97	9.59	5.62	3.91
Staunton	50	Frederick	0	3	3	0	6	0.42	2.31	1.89	3.17
Richmond	145	Chesterfield	2	2	9	0	13	0.82	5.01	4.19	3.10
Salem	108	Henry	3	1	2	0	6	2.25	4.24	1.99	3.02
NOVA	1	P. William	12	8	11	1	32	165.7	176.5	10.81	2.96
Salem	220	Henry	4	3	3	0	10	6.54	10.01	3.47	2.88
Hampton	13	Suffolk	0	19	8	5	32	0.33	13.08	12.75	2.51
Roads											
Bristol	80	Buchanan	1	9	5	0	15	38.91	44.91	6	2.50
Frederick	30	Caroline	1	6	5	0	12	2.3	7.25	4.95	2.42
Total			70	82	128	8	288			77.27	3.73
Percent			24	28	44	4	100				

Table 4.	Twelve Top	Primary	Route COCL	Crash	Locations
----------	------------	---------	-------------------	-------	-----------

	Route			FO	SW-	NON-	COCL	MP	MP	Section	Density
District	No.	County	НО	ROR	OP	CO	Crash	Begin	End	Mi	· ·
NOVA	639	P. William	2	3	3	1	9	0.42	1.44	1.02	8.82
Salem	615	Montgomery	1	7	2	1	11	0.23	1.54	1.31	8.4
NOVA	906	P. William	6	1	1	0	8	0	1.1	1.1	7.27
NOVA	790	Fairfax	2	4	1	0	7	0.5	1.55	1.05	6.67
NOVA	636	Fairfax	1	5	3	0	9	1.21	2.57	1.36	6.62
Hampton	688	Suffolk	0	2	5	0	7	1.88	2.98	1.1	6.36
Roads											
Hampton	620	York	0	6	3	0	9	0.02	1.56	1.54	5.84
Roads											
NOVA	642	Fairfax	4	4	7	0	15	0.04	2.8	2.76	5.43
Richmond	638	Chesterfield	4	5	5	0	14	3.17	5.84	2.67	5.24
Staunton	644	Rockingham	2	2	2	0	6	2.3	3.5	1.2	5.0
Bristol	642	Lee	1	6	2	0	9	3.82	5.66	1.84	4.89
NOVA	633	Fairfax	4	3	2	0	9	0.01	1.88	1.87	4.81
Total			27	48	36	2	113			18.82	5.53
Percent			24	43	31	2	100				

 Table 5. Twelve Top Secondary Route COCL Crash Locations in Rank Order

COCL Crash Type Distributions by Road Categories

Distributions of COCL crashes on road systems and on collision types also vary greatly among all. These results are summarized in Table 6 and reveal the following:

- Primary two-lane roads account for 90 percent of total COCL system crashes. The remaining percentages by number of lanes are three-lane road, 2 percent, and four-lane road, 8 percent.
- Secondary two-lane roads account for 96 percent of total COCL system crashes. The remaining percentages by number of lanes are three-lane road, 1 percent, and four-lane road, 2 percent. The two-lane road has been the predominant roadway category for COCL crashes for P&S systems. This is not surprising since the majority of undivided P&S roads are two-lane roads.

	Table 6. COCL Crash Type Distributions by Road Categories								
Road]	Number	of Lanes		Total	%		
System	Crash Type	2	3	4	>4				
Primary	HO .	510	10	96	2	616	15		
-	SW-OP	960	9	98	1	1067	26		
	NON-CO	206	4	7	1	217	5		
	FO ROTR-L	1978	51	118	2	2147	54		
	Total	3654	74	319	6	4047			
	%	90	2	8			100		
Secondary	НО	730	15	48	2	795	16		
2	SW-OP	1279	10	50	2	1342	28		
	NON-CO	255	1	2	0	258	5		
	FO ROTR-L	2428	12	35	2	2477	51		
	Total	4692	38	135	6	4872			
	%	96	1	2			100		
Total						8919			

Note: One SW-OP crash was recorded as occurring on a one-lane road.

- For primary roads, the crash distribution among COCL types is HO, 15 percent; SW-OP, 26 percent; NON-CO, 5 percent; and FO ROTR-L, 54 percent.
- For secondary roads, the crash distribution among COCL types is HO, 16 percent; SW-OP, 28 percent; NON-CO, 5 percent; and FO ROTR-L, 51 percent.

As Table 6 displays, the crash distribution is similar for the two systems. The FO ROTR-L crashes account for more than half of total COCL crashes for P&S systems. HO crashes account for 16 percent.

COCL Crash Frequencies by Seasons and Time of Day

Crash distributions by season and time of day were not significantly different (see Table B-3 in Appendix B). However, the highest number of crashes occurred from 3 P.M. to 6 P.M. and between October and December.

COCL Crash Analysis for Subdivision Streets and Rural and Urban Local Roads

The COCL crash analysis database included rural and urban local roads in the secondary road system. Subdivision streets are included in the rural and urban local roads functional classification groups. Unfortunately, the database does not include the subdivision street administrative classification; therefore, it was not possible to extract subdivision streets from the database. However, the following is known about the rural and local roads that include subdivision streets as a subset: Rural local roads added 711 crashes, or 14.6 percent, and urban local roads contributed 548 crashes, or 11.2 percent, to the COCL secondary road total. In total, local roads accounted for 1,259 crashes, or 25.8 percent, of the secondary roads. Local roads account for 65.1 percent, or 24,570 miles, of the 33,703 miles of secondary roads statewide.

GUIDELINES FOR CLRS

Detailed guidelines for the application, design, installation, and maintenance of CLRS are provided in Appendix C. The objective of the guidelines is to enhance safety on undivided, paved, primary and secondary highway systems in Virginia through the use of this effective and low-cost measure. The implementation of the guidelines should reduce crashes related to vehicles crossing the centerline.

CONCLUSIONS

- Twenty-four state DOTs and two provinces in Canada use CLRS.
- The state of the practice is to install CLRS on a case-by-case basis without the use of written guidelines.

- There are 14 types of CLRS in practice nationwide, but the most commonly used are continuous grooves 12 to 16 inches in length, 6 to 7 inches in width, and 0.5 inch in depth spaced 12 or 24 inches apart. The optimal patterns remain unknown.
- Most evaluation results of the safety effects of CLRS were based on simple comparisons of crash data between before and after periods. This approach can overestimate or underestimate the magnitude of crash reductions because it fails to control the regression-to-the-mean effect. The conclusions regarding a reduction of crash rates vary greatly, from a 90 percent to a negative number.
- For undivided roads, FO ROTR-L is the predominant type of COCL crash. The second and third most prevalent types are SW-OP and HO.
- For the primary system, the COCL crash distributions are FO ROTR-L, 54 percent; HO, 15 percent; SW-OP, 26 percent; and NON-CO, 5 percent.
- For the secondary system, the COCL crash distributions are FO ROTR-L, 51 percent; HO, 16 percent; SW-OP, 28 percent; and NON-CO, 5 percent.
- This study is the first documented analysis to include FO ROTR-L and NON-CO crashes in the COCL crash analysis.
- COCL crash features and distributions among road types and location features are
 - crash trends increase over time, especially for primary roads
 - crash density (i.e., crashes in 1 mile) is an important index
 - undivided road crash densities are 0.13 for secondary roads and 0.71 for primary roads
 - crash distributions for locations vary significantly; the average densities for the top 12 route sections were 42 times and 5.3 times higher than the statewide average indexes for secondary and primary roads, respectively.

The distributions of COCL crashes vary significantly with roadway system, road type, jurisdictional area, and the road location.

RECOMMENDATIONS

- 1. VDOT's Traffic Engineering Division (TED) should adopt the guidelines for CLRS provided in Appendix C. The guidelines should be designated as a TED memorandum.
- 2. When they are available, TED safety section staff should review the results of NCHRP Project 17-32¹³ to determine if and how the proposed guidelines should be revised.
- 3. CLRS should be installed on a case-by-case basis based on further study by the district traffic engineers.

COSTS AND BENEFITS ASSESSMENT

The costs and benefits of implementing CLRS were estimated based on best practices and experience in Virginia. The cost of installing rumble strips is about \$1 per foot, or about \$5,280 per mile. Depending on the type of pavement marking used, VDOT's installation cost is estimated to be \$5,600 to \$7,400 per mile. The maintenance cost over a 3-year period is estimated at \$2,000 per mile (an expected high estimate). Thus, if the damage caused by a crash that might be prevented is greater than this estimated cost of \$9,400, the estimated benefits will have exceeded the cost, as is desirable for any safety improvement measure.

For analysis purposes, the second site, Route 1, Northern Virginia District, in Table 4 was used. The crash density for this site is 4.73 COCL crashes per mile in a 3-year period for an 8.66-mile section. An accident reduction factor for CLRS of 20 percent is used. The Persaud et al. study with the largest sample size concluded a 21 percent reduction of frontal/sideswipe crashes.⁷ PennDOT uses a 20 percent reduction in its analysis.¹⁴ Although these reductions are based on HO and SW-OP crashes, our analyses used additional COCL crashes such as FO ROTR-L and NON-CO. For this analysis, only HO and SW-OP crashes were used to apply the crash reduction factor available. The crash density for HO and SW-OP is 4.27. A 20 percent reduction would yield a decrease of 0.85 crash per mile in 3 years.

In a review on paved shoulders, Cottrell estimated the average cost per crash for HO, sideswipe same direction, SW-OP, and FO ROR on the primary system to be \$46,135 for 1988.¹⁶ In the Federal Highway Administration's technical advisory on motor vehicle accident costs, injury crashes are categorized by the severity of injury, ranging from the lowest possible injury to an incapacitating injury.¹⁷ The cost considered in this simplified estimate considered only the value of the lowest possible injury cost. Therefore, this cost estimate is low. If this estimate is updated to reflect average accident cost figures from an FHWA report in 2002, the cost becomes \$83,763.¹⁸

Therefore, the benefit cost ratio for this example is estimated to be at least $83,763 \times 0.85/9400 = 7.6$ per mile. For this example, the ratio clearly indicates that implementation is recommended.

Society in general and the motoring public that uses a road section with CLRS benefit by the reduction in crashes and the subsequent costs of recovery.

IMPLEMENTATION PLAN

TED safety section staff should take the lead in this implementation. The final product should be a TED memorandum.

ACKNOWLEDGMENTS

The authors acknowledge the contribution and assistance of Jan Kennedy, VTRC, and Bernadette Snyder, TED, for data analysis; Stephen Read, TED, for ongoing assistance; Robert Hancock, Location & Design, Stephen Brich, TED, and Mike Perfater, VTRC, for reviewing the proposal and final report; and Mike Corwin, Hampton Roads District, Bill Harrell, NOVA District, Jim Diamond, Staunton District, and Stephen Read, TED, for reviewing the final report.

REFERENCES

- 1. Virginia Department of Transportation, Traffic Engineering Division. 2001. *Optimum Continuous Shoulder Rumble Strips and the Effects on Highway Safety and Economy*. Richmond.
- 2. Delaware Department of Transportation. 2003. *Centerline Rumble Strips*. Dover. http://www.deldot.net/static/projects/rumblestrip/handout.pdf. Accessed May 13, 2005.
- 3. Russell, E. R. and Rys, M. J. 2005. *Centerline Rumble Strips: A Synthesis of Highway Practice*. NCHRP Synthesis 339. Transportation Research Board, Washington, D.C.
- 4. Virginia Department of Transportation. 2004. Virginia Department of Transportation Draft Strategic Highway Safety Plan. Richmond.
- 5. Virginia Department of Transportation. 2003. State Highway Mileage Table. Richmond.
- 6. Nevada Department of Transportation Research Division. 2004. *Implementation of Centerline Rumble Strips in Nevada*. Carson City.
- 7. Persaud, B.N., Retting, R., and Lyon, C. 2003. *Crash Reduction Following Installation of Centerline Rumble Strips on Rural Two-Lane Roads*. Insurance Institute for Highway Safety, Washington, D.C.
- 8. Outcalt, W. 2001. *Center Line Rumble Strips*. Colorado Department of Transportation Research Branch, Denver.
- 9. Russell, E.R. 2003. U.S. Experience with Centerline Rumble Strips on Two-Lane Roads: Pattern Research and North American Usage. Kansas State University, Manhattan.
- 10. Noyce, D.A. 2004. Safety Evaluation of Centerline Rumble Strips: A Crash and Driver Behavior Analysis. University of Wisconsin-Madison, Madison.
- Willis, J., and Dean W. 2004. Mississippi's Rumble Stripe Experience. PowerPoint Presentation. 2004 Annual Meeting of the Transportation Research Board. Washington, D.C. http://tcd.tamu.edu/documents/rumble/rumble1.htm. Accessed May 13, 2005.

- Stanford, B. 2004. Update on Centerline, Edgeline and Laneline Rumble Strips in Texas, Texas Transportation Institute, College Station. <u>http://tcd.tamu.edu/documents/rumble/TX%20files/CLRS.ppt</u> Accessed May 13, 2005
- National Cooperative Highway Research Program. 2004. Guidance for the Design and Application of Shoulder and Centerline Rumble Strip. NCHRP Project 17-32. Washington, D.C. http://www4.trb.org/trb/crp.nsf/All+Projects/NCHRP+17-32. Accessed May 13, 2005.
- 14. Reed, R.C. July 16, 2002. *Modifications to Design of Shoulder and Edgeline Rumble Strips (SOL 470-02-05): Attachment A: Centerline Rumble Strips.* Memorandum. Pennsylvania Department of Transportation, Harrisburg.
- 15. Oregon Department of Transportation. 2003. Draft Rumble Strips (Guidelines). Salem.
- 16. Cottrell, B.H. 1990. *Review of Paved Shoulders*. VTRC 90-TAR7. Virginia Transportation Research Council, Charlottesville.
- 17. Federal Highway Administration. October 31, 1994. *Motor Vehicle Accident Costs*. Technical Advisory T 7570.2. Washington, D.C.
- Federal Highway Administration. Considering Safety in the Transportation Planning Process. Washington, D.C. http://tmip.fhwa.dot.gov/clearinghouse/docs/safety/chapter3.stm. Accessed May 13, 2005.

APPENDIX A SUMMARY OF SURVEY OF STATE DOTS

Table A-1. Summary of Survey of State DOTs

Data	Delaware	Kansas	Kentucky	Michigan	Minnesota	Nevada
Guidelines/Policy						
Case-by-Case	1		1			1
Other: Describe		Still evaluating	1	Test installation	History of HO/SW- OD crashes	
Any Studies on CLRS?						
Yes	1	1	1: Study underway		1: Participated in Insurance Institute for Highway Safety study; are monitoring all installations	
No				1		1
Miles CLRS Installed	2.9	15	75	7	250	10
Comments		Completing research; will have policy				
CLRS Design					2 sets inside lane on each side of centerline markings	,
Width (in)	16	12	24		6	16
Length (in)	7	6.5	7	7	7	7
Depth (in)	0.5	0.5	0.5	0.5	0.5	0.5
Spacing (in)	12	12	24	12	12	12
Pattern B						
Width (in)		12				
Length (in)		6.5				
Depth (in)		0.5				
Spacing (in)		12 and 24 alternating	RPMs 12 in from strips			

Data	Oregon	Pennsylvania	Washington	Wyoming
Guidelines/Policy	1	rural 2- and 4-lane undivided roads with AADT>1500 and pavement width 20 ft or more		
Case-by-Case			1	1
Other: Describe				Only have one
Any Studies on CLRS				
Yes	1	1: Studies on short-term effectiveness; most assumptions based on studies of our shoulder rumble strips or research in other states	1: Recently became high profile; only 1 in place long enough to gain any information	
No				1
Miles CLRS Installed	34	1500	75	10
CLRS design	w/o median	lane width 11-12 ft and minimum 3 ft paved shoulder		
width (in)	16	16	12	12
length (in)	7	7	7	7
depth (in)	0.5	0.5	0.5	0.5
spacing (in)	24 (48 for no passing zones)	24 and 48 alternating	12 (or 24)	12
Pattern B	w/ median	lane width 10 or 11 ft w/ <3-f shoulder	t w/ 4-ft median	
width (in)	16	14-18	16	
length (in)	7	7	7	
depth (in)	0.5	0.5	0.5	
spacing (in)	12	24	12	
	CLRS between double yellow lines; 2 sets if median > 4 ft	7	CLRS in passing zones	

	Total	Mean	Std. Dev.	Mode
Guidelines/Policy	2			
Case-by-Case	5			
Other: Describe	3			
Any studies on CLRS				
Yes	6			
No				
Miles CLRS Installed	1978.9	197.9	463.5	75
CLRS design				
width (in)		14.4	4.9	16
length (in)		7.0	0.2	7
depth (in)		0.5	0.0	0.5
spacing (in)		13.7	4.5	12
Pattern				
width (in)		14.7	2.3	16
length (in)		6.9	0.3	7
depth (in)		0.5	0.0	0.5
spacing (in)		16.0	6.9	12

APPENDIX B CROSS OVER CENTERLINE CRASHES

Route										Crash/
No.	County	НО	FO ROTR	SW-OD	NON-CO	Total	MP Begin	MP End	Total Mi.	Mi.
Bristol	l									
352	Lee	1	3	2	0	6	0.04	2.02	1.98	3.03
80	Buchanan	1	9	5	0	15	38.91	44.91	6.00	2.50
72	Dickenson	0	6	2	4	12	41.71	48.99	7.28	1.65
63	Russell	2	3	3	0	8	5.13	10.41	5.28	1.52
80	Washington	0	8	10	0	18	2.26	14.21	11.95	1.51
80	Dickenson	1	15	6	0	22	45.21	61.17	15.96	1.38
421	Lee	3	7	6	0	16	1.27	13.09	11.82	1.35
71	Scott	0	11	2	0	13	7.11	16.95	9.84	1.32
21	Grayson	0	12	1	5	18	2.23	15.97	13.74	1.31
94	Grayson	0	5	2	1	8	0.00	6.18	6.18	1.29
68	Wise	1	4	1	0	6	0.07	4.92	4.85	1.24
67	Russell	4	6	4	0	14	0.40	12.05	11.65	1.20
83	Dickenson	5	15	10	1	31	3.68	30.83	27.15	1.14
83	Buchanan	2	17	7	6	32	32.29	61.10	28.81	1.11
71	Russell	1	8	3	2	14	19.31	32.42	13.11	1.07
75	Washington	1	4	1	0	6	2.09	8.08	5.99	1.00
Culpep	per									
53	Albemarle	4	10	23	0	37	0.00	9.39	9.39	3.94
50	Fauquier	3	4	6	0	13	37.69	43.68	5.99	2.17
211	Rappahannock	4	7	3	0	14	24.66	31.14	6.48	2.16
28	Fauquier	7	5	11	0	23	1.80	13.58	11.78	1.95
22	Albemarle	3	1	8	1	13	0.03	8.67	8.64	1.50
229	Culpeper	0	10	3	1	14	3.20	14.71	11.51	1.22
22	Louisa	4	13	2	3	22	9.68	28.80	19.12	1.15
20	Albemarle	7	10	18	0	35	19.96	53.63	33.67	1.04
15	Fluvanna	3	10	4	0	17	101.55	118.33	16.78	1.01

Table B-1. COCL Crashes on Primary Route Sections in Counties/Districts with >1 crash/mi

Frede	ricksburg									
30	Caroline	1	6	5	0	12	2.30	7.25	4.95	2.42
1	Spotsylvania	4	13	3	2	22	133.31	143.20	9.89	2.22
208	Spotsylvania	3	12	6	3	24	30.93	43.16	12.23	1.96
216	Gloucester	2	2	2	0	6	0.10	3.61	3.51	1.71
1	Stafford	5	12	7	0	24	148.66	163.69	15.03	1.60
218	Stafford	4	5	1	1	11	0.01	7.21	7.20	1.53
2	Caroline	0	10	4	0	14	34.36	45.02	10.66	1.31
17	Caroline	2	5	0	0	7	157.25	162.95	5.70	1.23
198	Mathews	1	3	2	1	7	13.46	19.20	5.74	1.22
3	King George	0	5	0	2	7	55.12	61.19	6.07	1.15
3	Westmoreland	3	13	4	0	20	65.40	84.94	19.54	1.02
Hamp	ton Roads									
460	Suffolk	1	2	5	0	8	0.76	2.55	1.79	4.47
337	Suffolk	3	11	15	3	32	2.08	12.68	10.60	3.02
13	Suffolk	0	19	8	5	32	0.33	13.08	12.75	2.51
10	Isle of Wight	1	12	1	0	14	66.18	72.78	6.60	2.12
238	York	1	3	4	0	8	3.12	7.13	4.01	2.00
10	Suffolk	0	5	6	3	14	83.24	91.25	8.01	1.75
125	Suffolk	0	3	4	1	8	0.47	5.51	5.04	1.59
258	Southampton	1	6	3	1	11	0.18	8.74	8.56	1.29
175	Accomack	1	3	3	2	9	0.30	7.92	7.62	1.18
173	York	0	2	4	1	7	4.46	10.57	6.11	1.15
258	Isle of Wight	1	21	2	4	28	13.68	38.83	25.15	1.11
Lynch	burg									
20	Buckingham	2	7	3	3	15	0.50	8.30	7.80	1.92
60	Cumberland	3	12	3	0	18	135.83	150.35	14.52	1.24
15	Prince Edward	3	9	3	1	16	44.40	57.41	13.01	1.23
40	Pittsylvania	1	17	9	2	29	50.83	74.43	23.60	1.23
North	ern Virginia									
193	Fairfax	19	13	29	1	62	1.14	8.69	7.55	8.21
1	Fairfax	14	3	23	1	41	178.22	186.88	8.66	4.73
1	Prince William	12	8	11	1	32	165.67	176.48	10.81	2.96
50	Loudoun	2	9	10	0	21	46.81	55.27	8.46	2.48
9	Loudoun	5	10	12	2	29	0.26	12.52	12.26	2.37

244	Arlington	7	2	4	0	13	0.10	7.08	6.98	1.86
234	Prince William	13	9	30	0	52	0.06	31.44	31.38	1.66
215	Prince William	1	4	1	0	6	3.06	7.60	4.54	1.32
28	Prince William	6	1	10	0	17	14.00	27.07	13.07	1.30
123	Fairfax	7	11	17	1	36	0.01	28.86	28.85	1.25
15	Prince William	3	3	4	1	11	192.76	202.28	9.52	1.16
29	Fairfax	11	3	4	0	18	223.43	239.01	15.58	1.16
55	Prince William	3	2	1	0	6	59.75	64.99	5.24	1.15
15	Loudoun	4	6	18	0	28	204.37	230.68	26.31	1.06
Richmo	ond									
33	Henrico	10	5	7	0	22	3.97	9.59	5.62	3.91
145	Chesterfield	2	2	9	0	13	0.82	5.01	4.19	3.10
60	Powhatan	1	7	6	1	15	151.42	159.32	7.90	1.90
13	Powhatan	1	11	4	0	16	13.30	22.56	9.26	1.73
144	Chesterfield	1	2	6	0	9	7.50	13.48	5.98	1.51
307	Nottoway	1	6	0	0	7	2.89	7.68	4.79	1.46
153	Nottoway	0	7	0	0	7	0.50	5.48	4.98	1.41
157	Henrico	4	2	1	0	7	1.45	6.59	5.14	1.36
153	Amelia	1	2	2	1	6	11.83	16.65	4.82	1.24
36	Chesterfield	3	0	3	1	7	0.06	5.81	5.75	1.22
522	Powhatan	1	3	2	1	7	0.32	6.64	6.32	1.11
522	Goochland	0	3	4	1	8	8.90	16.52	7.62	1.05
Salem										
108	Henry	3	1	2	0	6	2.25	4.24	1.99	3.02
220	Henry	4	3	3	0	10	6.54	10.01	3.47	2.88
87	Henry	1	4	1	0	6	0.02	2.47	2.45	2.45
221	Carroll	0	8	2	0	10	33.25	37.69	4.44	2.25
100	Giles	1	3	2	0	6	36.89	39.92	3.03	1.98
122	Franklin	5	10	4	2	21	1.76	15.89	14.13	1.49
8	Montgomery	3	4	5	0	12	45.82	54.20	8.38	1.43
311	Craig	2	16	1	2	21	13.43	30.15	16.72	1.26
501	Bedford	3	3	5	2	13	84.56	94.94	10.38	1.25
100	Carroll	0	5	1	2	8	0.71	7.61	6.90	1.16
58	Carroll	0	9	3	0	12	206.81	217.42	10.61	1.13
221	Roanoke	7	7	4	1	19	79.82	96.80	16.98	1.12
24	Bedford	5	22	1	3	31	9.73	37.45	27.72	1.12

11	Botetourt	0	6	2	0	8	165.76	173.06	7.30	1.10
52	Carroll	8	13	5	2	28	0.23	27.07	26.84	1.04
58	Patrick	1	7	3	2	13	224.33	237.05	12.72	1.02
Staunt	on									
50	Frederick	0	3	3	0	6	0.42	2.31	1.89	3.17
211	Shenandoah	0	6	0	1	7	2.60	5.13	2.53	2.77
42	Shenandoah	2	6	1	0	9	265.24	270.45	5.21	1.73
340	Warren	1	6	8	0	15	84.04	92.77	8.73	1.72
55	Warren	3	11	5	1	20	19.37	35.57	16.20	1.23
33	Rockingham	4	10	6	2	22	0.75	19.08	18.33	1.20

Route					NON-CO					Crash/
No.	County	НО	FO ROTR	SW-OD		Total	MP Begin	MP End	Total Mi.	Mi.
Bristol										
642	Lee	1	6	2	0	9	3.82	5.66	1.84	4.89
645	Buchanan	2	2	1	2	7	1.59	3.19	1.60	4.38
680	Buchanan	0	11	4	1	16	0.3	4.6	4.30	3.72
706	Wise	0	4	2	0	6	6.89	9.12	2.23	2.69
640	Washington	1	5	3	1	10	0.5	4.29	3.79	2.64
627	Tazewell	0	5	3	0	8	0.2	3.3	3.10	2.58
624	Buchanan	3	3	7	0	13	2.6	8.04	5.44	2.39
642	Buchanan	1	0	6	0	7	0.2	3.6	3.40	2.06
643	Buchanan	3	12	11	2	28	0.06	13.92	13.86	2.02
646	Buchanan	0	5	1	0	6	2.88	5.88	3.00	2.00
803	Washington	0	5	1	0	6	0.05	3.1	3.05	1.97
645	Washington	1	11	2	0	14	0.43	8	7.57	1.85
647	Washington	1	11	3	0	15	0.88	9.21	8.33	1.80
616	Russell	0	6	0	0	6	3.75	7.44	3.69	1.63
652	Dickenson	2	7	1	0	10	0.53	7.01	6.48	1.54
609	Washington	0	10	1	0	11	0.18	8	7.82	1.41
638	Buchanan	2	9	7	0	18	5.09	18.8	13.71	1.31
624	Russell	1	5	2	0	8	0.25	6.57	6.32	1.27
606	Bland	2	7	3	1	13	0.35	10.98	10.63	1.22
631	Dickenson	0	5	0	1	6	1.06	6.13	5.07	1.18
620	Buchanan	1	1	2	2	6	10.35	15.59	5.24	1.15
Culpeper										
620	Albemarle	2	3	5	0	10	1.91	5.71	3.80	2.63
631	Albemarle	5	4	3	0	12	8.64	15.16	6.52	1.84
601	Albemarle	1	4	3	0	8	3.08	7.77	4.69	1.71
743	Albemarle	5	5	7	0	17	0	10.79	10.79	1.58
676	Albemarle	2	4	2	0	8	3.36	8.84	5.48	1.46
729	Culpeper	0	4	3	0	7	0.2	6.09	5.89	1.19
Fredericks	burg									
620	Spotsylvania	3	8	4	1	16	8.77	13.3	4.53	3.53
639	Spotsylvania	3	10	6	0	19	0.89	7.01	6.12	3.10
607	Stafford	2	3	3	0	8	0	2.71	2.71	2.95

Table B-2. COCL Crashes on Secondary Route Sections in Counties/Districts with >1 crash/mi

616	Stafford	1	11	6	2	20	0	7.49	7.49	2.67
610	Stafford	5	7	7	0	19	0.8	9.8	9.00	2.11
636	Spotsylvania	2	3	2	0	7	0.73	4.22	3.49	2.01
614	Gloucester	0	4	4	0	8	7.267	11.67	4.40	1.82
639	Caroline	2	12	2	2	18	0	10.17	10.17	1.77
627	Stafford	0	3	3	0	6	0	3.89	3.89	1.54
610	Spotsylvania	0	5	2	1	8	2.9	8.69	5.79	1.38
721	Caroline	0	7	1	0	8	0.85	8.51	7.66	1.04
606	Spotsylvania	1	7	3	0	11	9.2	20.05	10.85	1.01
Hampton	n Roads									
688	Suffolk	0	2	5	0	7	1.88	2.98	1.10	6.36
620	York	0	6	3	0	9	0.02	1.56	1.54	5.84
600	York	0	3	5	1	9	0.1	2.12	2.02	4.46
669	Isle of Wight	0	7	4	1	12	0.5	4.34	3.84	3.13
665	Isle of Wight	0	8	1	1	10	1.66	5.28	3.62	2.76
679	Accomack	0	3	2	1	6	15.62	18.42	2.80	2.14
627	Suffolk	1	2	3	1	7	0.7	4.77	4.07	1.72
Lynchbu	rg									
844	Pittsylvania	0	5	0	1	6	0.01	0.89	0.88	6.82
685	Campbell	0	6	1	0	7	0.3	3	2.70	2.59
664	Nelson	0	6	0	2	8	0.1	3.43	3.33	2.40
680	Campbell	1	4	1	0	6	0	2.85	2.85	2.11
683	Campbell	0	4	2	1	7	3.99	9.17	5.18	1.35
682	Campbell	1	9	2	0	12	9.58	18.51	8.93	1.34
726	Pittsylvania	0	12	0	0	12	3.43	12.56	9.13	1.31
622	Campbell	3	9	1	1	14	0.09	10.94	10.85	1.29
750	Pittsylvania	3	13	4	2	22	0.12	17.6	17.48	1.26
729	Pittsylvania	0	8	0	3	11	1.78	10.82	9.04	1.22
703	Pittsylvania	2	7	1	1	11	4.25	14.57	10.32	1.07
Northern	ı Virginia									
702	Fairfax	3	2	5	0	10	0	0.66	0.66	15.15
723	Fairfax	2	5	6	0	13	0.39	1.25	0.86	15.12
634	Fairfax	1	2	4	0	7	0.37	1	0.63	11.11
639	Prince William	2	3	3	1	9	0.42	1.44	1.02	8.82
906	Prince William	6	1	1	0	8	0	1.1	1.10	7.27
790	Fairfax	2	4	1	0	7	0.5	1.55	1.05	6.67
636	Fairfax	1	5	3	0	9	1.21	2.57	1.36	6.62

1401	Loudoun	3	0	3	0	6	0.03	0.94	0.91	6.59
642	Fairfax	4	4	7	0	15	0.04	2.8	2.76	5.43
633	Fairfax	4	3	2	0	9	0.01	1.88	1.87	4.81
649	Fairfax	6	2	6	0	14	1.03	4.01	2.98	4.70
775	Loudoun	0	2	4	0	6	0.38	1.69	1.31	4.58
637	Loudoun	0	2	4	0	6	0.67	2.04	1.37	4.38
1279	Prince William	4	1	2	0	7	1.08	2.68	1.60	4.38
657	Fairfax	10	6	13	2	31	0.2	8.36	8.16	3.80
660	Fairfax	1	6	1	0	8	0.83	3.08	2.25	3.56
650	Fairfax	10	7	8	0	25	0.01	7.49	7.48	3.34
681	Fairfax	2	5	5	0	12	0.01	3.72	3.71	3.23
638	Fairfax	2	7	5	0	14	0.5	5.14	4.64	3.02
1530	Prince William	4	0	2	0	6	0.29	2.28	1.99	3.02
608	Fairfax	3	3	10	0	16	1.34	7.61	6.27	2.55
621	Fairfax	2	1	4	0	7	2	4.75	2.75	2.55
665	Fairfax	6	4	6	2	18	2.82	9.93	7.11	2.53
695	Fairfax	6	4	6	0	16	1.09	7.49	6.40	2.50
643	Fairfax	8	7	3	1	19	2.74	10.59	7.85	2.42
674	Fairfax	4	7	13	0	24	0.7	10.8	10.10	2.38
658	Fairfax	3	3	3	1	10	0.04	4.25	4.21	2.38
640	Prince William	9	1	7	0	17	0.66	8.05	7.39	2.30
738	Fairfax	2	2	3	0	7	1.54	4.82	3.28	2.13
617	Fairfax	5	4	9	0	18	0.26	9.24	8.98	2.00
652	Fairfax	3	3	4	0	10	0	5.14	5.14	1.95
612	Fairfax	2	11	4	0	17	0.39	9.17	8.78	1.94
675	Fairfax	3	2	8	0	13	1.33	8.21	6.88	1.89
655	Fairfax	3	3	1	0	7	0.77	4.52	3.75	1.87
629	Fairfax	2	3	4	0	9	0.95	5.8	4.85	1.86
694	Fairfax	5	2	2	0	9	1.08	6.03	4.95	1.82
621	Prince William	2	1	5	0	8	0.2	4.62	4.42	1.81
674	Prince William	4	2	0	1	7	2.39	6.3	3.91	1.79
643	Prince William	2	6	5	0	13	0.06	7.6	7.54	1.72
613	Fairfax	4	3	10	0	17	2.56	12.54	9.98	1.70
600	Fairfax	10	3	1	0	14	0.72	9.27	8.55	1.64
789	Fairfax	1	0	5	0	6	0	4.1	4.10	1.46
606	Loudoun	0	2	3	1	6	0.89	5.11	4.22	1.42
673	Fairfax	1	5	3	0	9	0.81	7.15	6.34	1.42

603	Fairfax	1	3	4	0	8	1.55	7.31	5.76	1.39
646	Prince William	6	6	3	0	15	0.32	11.16	10.84	1.38
619	Prince William	8	10	11	1	30	4.31	27.11	22.80	1.32
611	Fairfax	5	6	9	0	20	0.11	16.21	16.10	1.24
641	Fairfax	3	1	4	1	9	3.58	11.73	8.15	1.10
620	Fairfax	6	6	7	0	19	4.01	22.09	18.08	1.05
Richmo	nd									
718	Chesterfield	4	1	0	2	7	1.03	1.34	0.31	22.58
638	Chesterfield	4	5	5	0	14	3.17	5.84	2.67	5.24
641	Chesterfield	7	3	6	0	16	0.34	4.49	4.15	3.86
616	Chesterfield	0	3	3	0	6	1.61	3.21	1.60	3.75
649	Chesterfield	1	10	2	0	13	0.25	4.3	4.05	3.21
714	Chesterfield	0	3	4	0	7	0	2.79	2.79	2.51
620	Chesterfield	3	2	1	0	6	0.38	2.9	2.52	2.38
647	Chesterfield	5	4	3	0	12	0.27	6.09	5.82	2.06
653	Chesterfield	5	6	3	0	14	5.83	12.76	6.93	2.02
626	Chesterfield	1	2	5	1	9	7.36	11.94	4.58	1.97
651	Chesterfield	4	1	6	3	14	0.13	8.21	8.08	1.73
688	Mecklenburg	0	6	1	0	7	8.04	12.35	4.31	1.62
637	Chesterfield	3	3	3	0	9	0.35	5.98	5.63	1.60
623	Goochland	3	3	3	0	9	0.2	5.87	5.67	1.59
678	Chesterfield	5	1	3	1	10	1.38	7.73	6.35	1.57
654	Chesterfield	0	4	2	0	6	7.05	11.02	3.97	1.51
604	Chesterfield	4	9	9	2	24	0.82	16.81	15.99	1.50
711	Powhatan	2	12	3	2	19	0.5	14.03	13.53	1.40
Salem										
689	Roanoke	1	2	4	0	7	1.32	1.91	0.59	11.86
615	Montgomery	1	7	2	1	11	0.23	1.54	1.31	8.40
658	Montgomery	0	9	4	1	14	0.01	2.96	2.95	4.75
642	Montgomery	1	3	2	0	6	1.32	2.82	1.50	4.00
652	Montgomery	3	2	1	0	6	5.62	7.2	1.58	3.80
688	Roanoke	1	4	1	0	6	0.2	2.68	2.48	2.42
684	Henry	0	5	0	3	8	1.07	4.82	3.75	2.13
697	Franklin	0	4	2	1	7	5.39	8.88	3.49	2.01
643	Pulaski	0	6	0	0	6	1.7	4.75	3.05	1.97
609	Henry		7	4	0	12	0.6	6.85	6.25	1.92
603	Montgomery	5	13	3	2	23	0.48	13.61	13.13	1.75

670	Franklin	2	7	2	0	11	1.44	7.81	6.37	1.73
721	Carroll	2	3	0	1	6	0.2	3.7	3.50	1.71
611	Pulaski	0	4	2	2	8	1.46	6.16	4.70	1.70
785	Montgomery	0	3	2	1	6	0.81	4.75	3.94	1.52
600	Pulaski	1	4	1	0	6	1.29	5.25	3.96	1.52
730	Giles	1	5	3	0	9	4.48	10.45	5.97	1.51
637	Montgomery	0	5	1	0	6	1.83	5.81	3.98	1.51
634	Bedford	2	2	2	1	7	0.02	4.88	4.86	1.44
684	Franklin	0	6	0	0	6	1.57	5.97	4.40	1.36
757	Bedford	1	6	5	1	13	0.1	9.96	9.86	1.32
687	Henry	0	15	3	1	19	2.53	18.83	16.30	1.17
674	Henry	1	3	3	0	7	0.4	6.83	6.43	1.09
Staunton										
910	Rockingham	1	3	1	1	6	0.85	1.99	1.14	5.26
644	Rockingham	2	2	2	0	6	2.3	3.5	1.20	5.00
710	Rockbridge	1	7	2	0	10	1.1	5.17	4.07	2.46
753	Rockingham	0	6	0	1	7	5.85	8.8	2.95	2.37
864	Roanoke	1	3	2	0	6	1.45	3.99	2.54	2.36
612	Augusta	2	10	4	0	16	7.18	15.42	8.24	1.94
602	Rockingham	2	6	0	3	11	0.5	7.56	7.06	1.56
662	Augusta	0	5	1	1	7	0.76	5.3	4.54	1.54
664	Augusta	0	10	2	0	12	2.44	11.05	8.61	1.39
659	Rockingham	2	6	2	0	10	0.89	8.75	7.86	1.27
608	Augusta	5	14	1	3	23	11.9	31.59	19.69	1.17

		Time of Day									
	0:00-	3:00-	6:00-	9:00-	12:00-	15:00-	18:00-	21:00-			
Season	3:00	6:00	9:00	12:00	15:00	18:00	21:00	24:00	Total		
Primary Two-Lane Undivided Season by Time of Day 2001-2003											
January-March	82	88	178	158	166	163	147	122	1104		
April-June	80	90	139	94	124	172	127	130	956		
July-September	89	69	105	104	143	174	127	117	928		
October-December	104	102	134	116	147	191	142	123	1059		
Total	355	349	556	472	580	700	543	492	4047		
Secondary Two-Lane	Undivided	l Season b	y Time	of Day 2(01-2003						
January-March	105	82	192	164	156	204	181	175	1259		
April-June	116	73	111	138	149	179	171	160	1097		
July-September	119	83	98	110	162	219	160	190	1141		
October-December	142	81	179	144	181	225	226	197	1375		
Total	482	319	580	556	648	827	738	722	4872		

Table B-3. COCL Crashes on Primary and Secondary Roads by Times/Seasons

APPENDIX C GUIDELINES FOR THE USE OF CENTERLINE RUMBLE STRIPS

Objective

The objective of these guidelines is to enhance safety on undivided, paved, primary and secondary highway systems in Virginia through the use of an effective and low-cost measure: centerline rumble strips (CLRS). These two road systems include all paved undivided multilane and two-lane highways in the state. The implementation of CLRS should reduce crashes related to crossing the centerline including head-on, sideswipe opposite direction, fixed object run-off-the-road left collisions, and non-collisions (run-off-the-road left).

Application

- 1. CLRS should be considered as one countermeasure available in the toolbox of district traffic engineers to reduce crashes caused by vehicles crossing the centerline.
 - Locations where studies by district or central office staff indicate an abnormally high number of cross over the centerline (COCL) crashes should be considered. These may include road locations with sharp vertical and horizontal alignments, poor sight distance, etc. Locations with higher numbers of severe crashes resulting in injuries or fatalities should be prioritized. If centerlines are not present, TE Memorandum TE 251, Pavement Marking Policy, should be used to determine if pavement markings are appropriate.¹
 - Priority should be given to roads in the primary system because of the higher functional classification and service they provide in the road network.

Site-Specific Conditions

- 1. CLRS should be used only under certain conditions:
 - On asphalt concrete pavements.
 - On roads at least 20 feet wide.
 - On roads with good structure and good pavement. Pavement durability along the CLRS, especially if the CLRS is on the centerline joint, is a concern. A minimum depth of 3.5 in has been suggested for shoulders by VDOT Materials staff when shoulder rumble strips are being considered. The district pavement engineer should be consulted to verify that the pavement condition and structure are suitable for CLRS installation.
- 2. CLRS should not be used under certain conditions:

- *In passing zones, especially passing zones on two-lane roads.* However, if there are COCL crashes that are unrelated to passing maneuvers in a passing zone, a CLRS with a reduced depth of 3/8 inch may be considered.
- On bridge decks.
- In narrow road sections without pavement markings.
- On subdivision streets.
- Within the limits of center two-way turn lanes.
- 3. At locations where CLRS is being considered, the noise impact on adjacent residences should be taken into account. The frequency of noise caused by vehicles traversing CLRS is unknown.
- 4. On roads where bicycle use is frequent, the impact of vehicle-bicycle interaction should be considered in the decision on whether to install CLRS. Motorists often cross the centerline when passing a bicyclist riding to their right. When CLRS are present, motorist may tend to avoid the CLRS by not moving over to the left as far as they would otherwise. Thus, vehicles may be positioned closer to bicyclists as they are passing them

Study

Reviewing sites with respect to these guidelines is in essence determining the feasibility of CLRS. The district traffic engineer should conduct a study and field review to verify that CLRS is an appropriate measure to implement based on the described application and site-specific conditions. The study should include the traffic volumes, posted speed, roadway geometry, adjacent land use, existing traffic control, and pavement condition. The study should include a benefit-cost analysis.²

CLRS Design

VDOT's preferred CLRS design pattern is as follows: The pattern is milled. The groove specifications are 12 inches long, 7 inches wide, and 0.5 inch deep with a uniform interval or spacing of 12 inches. This design is shown in Figure C-1. Note the layout of CLRS with double-yellow line markings along the road center and, if present, raised pavement markers (RPMs). RPMs are present as an option only; the district traffic engineer is to decide on their use.

At the intersections of roads and commercial entrances, a gap or break in CLRS should be provided to allow for turning movements of vehicles. The size of the gap should be determined by the district traffic engineer for each location. Discontinuing the CLRS for the last 25 feet of pavement marking before the intersection should be typical so that turning vehicles are less likely to transverse the CLRS (see Figure C-2). At the discretion of the district traffic engineer, a break in CLRS may be considered for driveways.

Figure C-1. CLRS Design Criteria

Figure C-2. CLRS Breaks at Intersections

Installation and Maintenance

- 1. The installation and maintenance of the CLRS should be included as part of the regional contracts for shoulder rumble strip installation. This should provide the economies of scale for a lower cost.
- The suggested sequence of CLRS installation is as follows: (1) prepare the temporary traffic control plan; (2) set up lane closures using the traffic control plan; (3) install the rumble strip; (4) vacuum and remove waste in cut areas; (5) apply asphalt sealant to vacuumed grooves [if RPMs are present, cover them before applying the sealant]; (6) after the sealant is dry, install double-yellow markings on the road centerline; (7) remove the covers on any RPMs (if present); and (8) remove temporary traffic control.
- 3. CLRS should be well maintained to ensure the function of reducing crashes. The grooves should be sealed periodically, depending on the condition of centerline markings as determined by the districts.

REFERENCES

- 1. Virginia Department of Transportation, Traffic Engineering Division. 1994. *Traffic Engineering Memorandum TE-251: Pavement Marking Policy*. Richmond.
- 2. Chun, C.S., and Cottrell, B.H. 2005. *Guidelines for Centerline Rumble Strips in Virginia*. VTRC 05-R30. Virginia Transportation Research Council, Charlottesville.