Return to the VTRC Home Page
Click here to print the printer friendly version of this page.
 
Page Title: VTRC Report Detail

The contents of this report reflect the views of the author(s), who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Virginia Department of Transportation, the Commonwealth Transportation Board, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. Any inclusion of manufacturer names, trade names, or trademarks is for identification purposes only and is not to be considered an endorsement.

Title:

Use of a Sandwich Plate System in a Virginia Bridge
Authors:
Cousins, Thomas E.
Murray, Thomas M.,
Harris, Devin K.
Gomez, Jose´ P.
Jose P. Gomez
Year: 2009
VTRC No.: 09-CR12
Abstract: The deterioration of the nation's civil infrastructure has prompted the investigation of numerous solutions to the problem. Some of these solutions have come in the form of innovative materials for new construction, whereas others have considered rehabilitation techniques for repairing existing infrastructure. A relatively new system that appears capable of encompassing both of these solution methodologies is the sandwich plate system (SPS), a composite bridge deck system that can be used in both new construction or for rehabilitation applications. SPS consists of steel face plates bonded to a rigid polyurethane core; a typical bridge application utilizes SPS primarily as a bridge deck acting compositely with conventional support girders. As a result of this technology being relatively new to the bridge market, design methods have yet to be established. This research aims to close this gap by investigating some of the key design issues considered to be limiting factors in implementation of SPS. The key issues that will be studied include lateral load distribution, dynamic load allowance, and deck design methodologies. With SPS being new to the market, there has been only one bridge application, limiting the investigations of in-service behavior. The Shenley Bridge, located near Quebec, Canada, was tested under live load conditions to determine in-service behavior with an emphasis on lateral load distribution and dynamic load allowance. Both static and dynamic testing was conducted. Results from the testing allowed for the determination of lateral load distribution factors and dynamic load allowance of an in-service SPS bridge. Results from this study suggest that the behavior of an SPS does differ somewhat from conventional systems, but the response can be accommodated with current AASHTO Load and Resistance Factor Design (LRFD) provisions as a result of their conservativeness. In addition to characterizing global response, a deck design approach was developed in this research project. In this approach, the SPS deck was represented as a plate structure, which allowed for the consideration of the key design limit states within the AASHTO LRFD specification. Based on the plate analyses, it was concluded that the design of SPS decks is stiffness-controlled as limited by the AASHTO LRFD specification deflection limits for lightweight metal decks. These limits allowed for the development of a method for sizing SPS decks to satisfy stiffness requirements