Return to the VTRC Home Page
Click here to print the printer friendly version of this page.
Page Title: VTRC Report Detail

The contents of this report reflect the views of the author(s), who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Virginia Department of Transportation, the Commonwealth Transportation Board, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. Any inclusion of manufacturer names, trade names, or trademarks is for identification purposes only and is not to be considered an endorsement.


Development and Evaluation of a Calibration and Validation Procedure for Microscopic Simulation Models
Park, Byungkyu.
Qi, Hongtu.
Year: 2004
VTRC No.: 05-CR1
Abstract: Microscopic traffic simulation models have been widely accepted and applied in transportation engineering and planning practice for the past decades because simulation is cost-effective, safe, and fast. To achieve high fidelity and credibility for a traffic simulation model, calibration and validation are of utmost importance. Most calibration efforts reported in the literature have focused on the informal practice with a specific simulation model, but seldom did they propose a systematic procedure or guideline for simulation model calibration and validation. The purpose of this study was to develop and evaluate a procedure for microscopic simulation model calibration and validation. Three widely used microscopic traffic simulation models, VISSIM, PARAMICS, and CORSIM, were selected for model review and practice of model calibration and validation. The validity of the proposed procedure was evaluated and demonstrated via two case studies including an actuated signalized intersection and a 5-mile freeway segment with a lane-closure work zone. The simulation results were compared against the field data to determine the performance of the calibrated models. The proposed procedure yielded acceptable results for all applications, thus confirming that it was effective for the different networks and simulation models used in the study. Although the calibrated parameters generated the performance measures that were representative of the field conditions, the simulation results of the default parameters were significantly different from the field data.